
Smallworld Core Spatial Technology™ 4
Moving from monolithic applications to
component–based development

GER-4234 (10/04)© 2004 General Electric Company.

All Rights Reserved

Simple beginnings yielded mixed
blessings

The first GIS applications were simple affairs. Each

application typically mapped on to a single task and

was operated by a few engineers.

A typical application might answer a question such as

“If an outage occurs at this point on the network, which

of my customers will be affected?” These kinds of

applications were typically developed in isolation with

little thought given to other existing applications

(generally because it was thought at that time that

there was no need). Over time, more and more

applications were developed as business raced to

unlock the value held in their data. Some of these new

applications provided new pieces of functionality,

others overlapped more or less with existing

applications and duplicated code. As time went it on it

became obvious to application architects that it would

be very advantageous if these applications could talk

to each other and share existing functionality and data.

Most GIS vendors approached this problem by

developing piecemeal point-to-point connections

between applications. If application A needed to talk to

application B, then a point-to-point connection AÆB

was developed to help out. If A now needed to talk to

C, then a new point-to-point connection appeared

AÆC. This kind of architecture happily managed the

few point-to-point connections that were originally

needed, but the increase in complexity of GIS

applications and the business need to integrate with

each other quickly resulted in a complex web of

interconnections that became increasingly expensive

to extend and maintain.

As if the integration question was not problematic

enough, the whole issue was compounded by an

architecture that squandered the opportunity to reuse

code by producing made-to-order applications that

were heavily tailored to one particular customer and

difficult to customize or configure.

Application user interfaces that were simple and

effective got corrupted by ad hoc additions that

resulted in a confusing, overly complex experience for

many users.

Moving forward with components,
frameworks, databases and small
focused applications

The Smallworld architecture has matured over time

keeping pace with demands of the more powerful

applications that require good integration and fast

deployment. Recognizing at a very early stage that

businesses were demanding more from their GIS, a

bold initiative was started to move its core foundation

forward to an even more flexible and extensible

1

Moving from monolithic applications to component–based development

GE Energy | GER-4234 (10/04)

Abstract

Early adopters of Geospatial Information Systems (GIS) technology faced the daunting and expensive process of

digitizing information held typically as paper-based records. As this data capture phase approached completion,

businesses began to demand a return on the investment they made in their data and their GIS. At first, small,

simple applications appeared that began to exploit the value of this data by automating selective engineering

tasks. These applications were often developed in isolation with little or no mechanisms for supporting integration

and with user interfaces that were often confusing and inconsistent. This fundamental architectural weakness

was exposed as GIS started to move out of the engineering department and adopt a more important role within

the enterprise as a whole.

The Smallworld architecture developed by GE Energy acknowledges this new found importance by providing a

powerful, extensible component-based framework that meets the demands of today’s user-focused, enterprise-

based GIS applications.

application architecture capable of meeting and

exceeding the most demanding requirements of the

modern enterprise.

With the Smallworld architecture this transi-tion has

reached a significant milestone with the introduction of

a suite of cutting edge

technologies designed to simplify integration, encourage

code reuse, reduce development times and ease

deployment. These key technologies are:

■ Component-based applications.

■ Frameworks and databases.

■ Configuration and customization using open

standards.

■ Small focused applications.

Building large with smaller blocks

The overriding principal of a component-based

application model is to move away from applications

implemented as a single, inflexible piece of code to

more manageable, more flexible applications

constructed from many smaller, reusable components.

Each component is structured to represent a self-

contained piece of functionality that has been designed

to be generic enough to be reused by more than one

application. For example, the outage application cited

earlier on in this paper might be composed of a

network trace component (to find affected customers),

a map component (to see the extent of the outage), a

report component (to produce a mail shot informing

customers of repair work) and a highly focused user

interface to allow the application to be easily driven by

the end user.

With the Smallworld architecture, each component is

implemented as an object class that inherits its basic

support infrastructure from an existing core class

provided by the Smallworld core API. Application

developers can then expose the required functionality

through the component using a well defined API. It is,

therefore, important that careful thought is given to the

definition of a component’s API to make it as generic

and reusable as possible. This inevitably means more

design effort initially, but it is an investment that pays a

recurring dividend over time as development costs are

dramatically reduced through code reuse, streamlined

integration, reduced maintenance and increased quality.

A super superstructure

Components by themselves are isolated pieces of

functionality. The structure that brings these

components together to form a useful application

within the Smallworld architecture is called a

framework. A framework is a powerful mechanism in

its own right, but also manages many of the day-to-

day housekeeping chores associated with creating,

configuring, managing and discarding the set of

components that it oversees.

Frameworks are themselves derived from components

and this powerful concept allows the manufacture of

composite components comprised of an assembly of

smaller components. This is a useful capability

especially in the case of very complex systems.

Frameworks also provide the essential infrastructure to

allow components to communicate, broadcast events

and share data with each other using an underlying

architecture based on an elegant databus technology.

One important idea to emphasize at this point is that

components rarely interact directly with each other

(thus avoiding the morass associated with point-to-

point connections). Instead, this inter-component

interaction is an important responsibility of the

encompassing framework and is implemented by

allowing events and data broadcast by one component

to be channeled through a common databus to

another interested component for processing.

This works in the following way:

■ Components first register with the databus the

types of data that they will produce and the

types of data that they will consume (are

interested in).

■ Components that want to share interesting data

2

Moving from monolithic applications to component–based development

GE Energy | GER-4234 (10/04)

3

Moving from monolithic applications to component–based development

GE Energy | GER-4234 (10/04)

with other components simply push it on to the

databus along with some metadata that classifies

it (for example, as the current map selection).

■ Components that have expressed an interest in

this data will then be notified when it becomes

available allowing the component to access the

data and perform some processing on it (for

example, updating a user interface to show

details of the new selection).

Consumer components are not restricted to having to

wait for a producer component to make data available.

A consumer component can also pull data from the

databus when needed (not strictly asynchronous). In

this circumstance the consumer component explicitly

requests the databus to make data of a particular type

available (again, for example, the current selection).

The databus will then oblige by forwarding the request

to the appropriate producer component who, in turn,

will return the data to satisfy the original request.

This loosely coupled approach is an important

architectural advantage as it simultaneously helps to

ensure the independence of each component and

discourages direct dependencies between components

that all too often lead to migration, maintenance and

integration problems.

Using open standards to configure inner
workings

Many conventional GIS architectures that evolved from

supporting simple applications continue to promote

modifications to source code or editing proprietary

system files as an effective way to configure and

customize parts of an application. However, the

realities of the enterprise environment makes this an

unappealing proposition for most IT departments

irrespective of the programming language or how

widespread the use of the files in question. This is

especially true for those departments with limited

resources and finite skill sets. The Smallworld

architecture was designed with these practical

limitations in mind and implements configuration and

customization using the latest XML open standard.

Each component is configured using a snippet of XML

that is then added to a master XML file that contains

the configuration information for all the components

required by an application. This approach is attractive

to IT departments since XML is a widely understood

standard and there are a wide variety of inexpensive

tools for easily editing its content.

Configuration files can be kept centrally to support

groups of similar users or stored locally to provide

support to an advanced user.

Focusing on the user

Large monolithic applications are not only unwieldy to

develop, integrate and deploy but also tend to cultivate

ungainly, confusing and unproductive user interfaces.

These monster applications often have as their roots

humble origins. Small applications designed to help

with a particular task might have originally had

productive user interfaces, but the limitations of the

underlying architecture together with time and

budgetary constraints meant that the path of least

resistance often led to applications being augmented

with extra functionality that neither fitted well with the

application’s original purpose nor its intended new role.

Over time this degenerative process continued,

resulting in a plethora of mega-applications with

muddled, bloated user interfaces that end users found

confusing, inconsistent and unproductive.

The Smallworld component based architecture allows

the application engineer to once again put the user first

by providing small, highly task-focused applications

that improve the end user’s experience and

productivity. Application architects can now quickly

swap in and out components, change their

configuration and so on to meet the changing needs of

the user simply by modifying configuration files.

Components can have modular user interfaces that

can be hosted in containers such as panels, tabs or

dialogs and can be tailored to specific situations. This

mechanism allows components to be easily moved

around the user interface to optimize workflow.

Components can expose functionality that can be linked

easily to common user interface elements such as pull

down and popup menus, toolbars and accelerator keys

again simply by editing configuration files.

A component’s properties can be set by the

application developer by modifying snippets of XML

and, where appropriate, may also be exposed to the

end user through a common dialog provided by

Smallworld core API (example properties might

include display units, current co-ordinate system and

so on). Modified user preferences are restored when

the user starts a new session.

Small focused applications require less documentation,

less training, lead to fewer end user errors and bind

more tightly to the existing business process.

Conclusion

Where GIS architectures have not kept pace is with

the needs of the modern enterprise. They have

continued with large, monolithic applications

integrated using a multitude of point-to-point

connections and presented with confusing and

muddled user interfaces, which seriously diminish

the business benefits of using GIS.

The Smallworld architecture delivers a powerful, highly

flexible component-based architecture that eases

integration and supports the advanced business

processes executed by today’s enterprises: providing

easy to use applications focused on the user.

4

Moving from monolithic applications to component–based development

GE Energy | GER-4234 (10/04)

5

Moving from monolithic applications to component–based development

GE Energy | GER-4234 (10/04)

