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INTRODUCTION
Numeric transmission line distance protection systems have been widely applied in recent years
primarily because of their monitoring and communications capabilities rather than for improved
performance of the protection functions.  Typical tripping times for digital distance relays range
from one to 3 cycles, while state of the art relays using analog signal processing techniques offer
trip times of one-quarter to one cycle.  A previous paper [1] discussed some of the time delays
associated with typical digital processing used in digital distance relays as well as the affect of
higher sampling rates.

Recent developments in adaptive algorithms and the use of higher sampling rates combine to
provide secure high speed protection not available with previous implementations.  These
advancements are in both the area of phasor calculation and the protective algorithm
implementation.

TRADITIONAL FOURIER CALCULATION

Full Cycle Discrete Fourier Transform
Many analog and digital distance relays use phasors as the operating signals in the distance
functions.  The phase angle comparator is a well known operating principle that uses the phasor
information contained in the input signals.  A digital filter that both removes the non-fundamental
frequencies and also provides phasor information is therefore desirable for a digital
implementation of a phase angle comparator distance relay.  One such filter which is widely used
in digital distance relays is the Discrete Fourier Transform which is considered in this paper.

A steady state voltage signal in the time domain can be described by the equation:

v(t) = Vpeak • cos(ωt + θ)
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In a digital relay, this signal is sampled N times per cycle.  Thus the input signal can be
represented by a series of samples, Vk, where k = 0 to N-1.

Digital filters, such as those discussed in this paper, process the sampled data points, Vk, by
multiplying each sample by one or more coefficients determined by the type of digital filter
employed.  In the traditional Fourier calculation, each sampled value is multiplied by a sine term
and a cosine term.  The Discrete Fourier Transform Calculation of the fundamental components
can be defined by the following equations.
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The magnitude of the voltage phasor can be calculated by the following equation.

Vmag = (Vreal2 + Vimag2)½

The phase angle of the voltage phasor can be calculated by the following equation:

Vangle = arctan(Vimag/Vreal)

Vangle = θv

Note that depending upon the design of the digital  filter, the angle θv may be  constant, or it may
rotate 360/N degrees with each new sample.

With these definitions, the Fourier Transform Calculation is able to convert the sinusoidal voltage
waveshape to a phasor.  The phasor is represented by two forms, the first form is the rectangular
form where the real and imaginary components define the phasor; the second form is the polar
form where the magnitude and the phase angle define the phasor.

Recursive Vs Non-recursive Filters
There are two methods of calculating the Discrete Fourier Transform:  Recursive and Non-
recursive.  The Non-recursive method requires that each sampled data point be saved in memory
(amount of data is determined by the "window" size) and that the entire coefficient multiplication
and summation process be performed every sample.  The newest sample becomes the Nth sample,
the oldest sample is dropped from the calculation.  The real and imaginary terms must be
recalculated from the beginning.  One implementation of the Recursive method requires that the
product of the sine and cosine coefficients and the sample data values used to generate the sums
are saved (the amount is still determined by the "window" size) and an abbreviated summation
process is performed.  In this method, the oldest product is removed from the sum and the newest
product is added into the sum.  With this Recursive implementation, only the product for the
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newest sample needs to calculated instead of recalculating the values for all the samples in the
"window".  This reduces the amount of calculations performed.  Therefore, the time required to
complete this process is also reduced enabling the relay to perform additional tasks or increase its
sampling rate.  The Non-Recursive method, on the other hand, requires more time and/or
computing speed to complete.

Half Cycle vs. Full Cycle Fourier Calculation
The Discrete Fourier Transform has the capability of working on different sized "windows".  The
Full Cycle window generates the sums using all the sampled data collected over the last cycle.
This means that the "window" includes the last full cycle's worth of data.  The Half Cycle window
generates the sums using the sampled data collected in the last half cycle.  Therefore, the data
"window" is a half cycle.  Using a Half Cycle window allows the Discrete Fourier Transform to
more quickly track a change in the sampled data than is possible with a Full Cycle window.
However, there are differences in the filtering actions of the Half and Full Cycle filters.  For
example, the Half Cycle Fourier is subject to errors due to dc offset and even harmonics of the
fundamental frequency.  Both the Full and Half Cycle Fourier may be implemented as either a
Recursive or Non-recursive filter.

A NEW APPROACH TO PHASOR CALCULATION

High Speed Sampling
The effect of the sample rate on the operating time of a generic distance relay was discussed in
[1].  It was noted that the improvement in the relay operating times for sampling rates higher than
16 samples per cycles was not substantial.  In addition, the higher sampling rate required more
computing power (higher cost) in order to process the data in less time.  At a sampling rate of 4
samples per cycle on a 50 Hz. system, 5 milliseconds is available between samples to process the
data and run the protection algorithms; if the sample rate is increased to 64 samples per cycle, the
time between samples is reduced to only  0.3125 ms.

A raw sampling rate of 64 samples per cycle is now feasible, and desirable for the increased
fidelity of the oscillography data included with the digital relays.  This raises the issue of what to
do with the extra data samples if the protection is run only 16 times per cycle.  The first option
was to use every fourth sample for protection, and to use the remaining samples only for the
oscillography data.  This approach could result in aliasing problems due to the higher order
frequency components resulting from the increased sampling rate.  As a result, it was decided to
use all of the sampled data, but to run the protection algorithms only 16 times per cycle.  Sets of
four data samples are processed together to form a “mini phasor” or “phaselet”.

Phaselets
Phaselets are partial sums of the product of the waveform samples and the sine/cosine
coefficients.  Groups of phaselets may be scaled and added together to create a phasor.  Phaselets
enable the efficient computation of phasors over sample windows that are not restricted to an
integer multiple of a half cycle at the power system frequency.  In the case of a data window that
is a multiple of a half cycle, the computation is exactly equal to the Discrete Fourier Transform.
In the case of a window that is not a multiple of a half-cycle, there is an additional correction that
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results from the sine and cosine functions not being orthogonal over such a window.  However,
the computation can be expressed as a two by two matrix multiplication of the sine and cosine
weighted sums.  A detailed description of the phaselet calculations is presented in Appendix A.

Digital Mimic
The inductive behavior of power system transmission lines gives rise to decaying exponential
offsets during transient conditions.  Processing of data containing this offset component will result
in an oscillation of the phasor (magnitude and angle) [1].  It is therefore very desirable to remove
the exponential offset prior to the phaselet calculation.

Using analysis, simulations, and several references, several alternatives for the removal of the
decaying exponential offset were considered, including various least squares fits and a digital
mimic.  Simulations and analysis showed that the mimic is the best approach, effectively removing
the decaying offset without introducing noise artifacts.

The mimic computation is applied to the  raw data samples for each phase current.  The output of
the mimic calculation is the input for the phaselet computation.

Variable Window
The traditional approach to the calculation of the Fourier employs a “sliding data window”
(typically a half or full cycle).  When a fault occurs, the sliding data window includes pre-fault
data along with fault data.  Subsequently, the phasor estimation, (and the distance relay ) will have
an inherent transient time delay that is a function of the window size, as discussed in [1].  The
concept of a “variable window” has been developed to improve the response of the phasor
estimation, and as a direct result to speed up the operating time of the distance relay.

In steady state, non-fault, conditions, a one cycle window of data is used.  The phaselets are
summed over one cycle, creating the equivalent of a one cycle window DFT.  When a disturbance
is detected on the power system, the window size is dynamically reduced to the width of a single
phaselet.  As new phaselets are obtained, the window size is increased to include the new data.
Because all of the pre-fault data has been removed from the window, the phasor estimate
responds more quickly to the state of the power system, and the accuracy of the estimate
improves as each new phaselet is added.  The data window continues to expand until it reaches a
full cycle at which point the window reverts to a sliding window similar to the conventional DFT.

ADAPTIVE TECHNIQUES
The use of numeric techniques for protective relays has allowed the protection algorithms to
become adaptive to conditions on the power system.  The use of these adaptive algorithms can
increase both the security and the dependability of the protective system compared to similar
electronic and electromechanical relay systems.  Several of these adaptive techniques will are
discussed in the following sections.

Adaptive Polarizing Memory
Some form of polarizing voltage memory is a common feature for mho distance relays.  The
memory voltage serves three main functions:  it allows the distance relays to operate for zero
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voltage three phase faults in front of the relay, it prevents the relay from operating for zero
voltage three phase faults behind the relay, and it give the relay a variable characteristic [3].  In
the past, the duration of the memory voltage was typically for a predetermined time, or for an
“infinite” time.  One possible problem area with the fixed memory time is for faults beyond the
reach of the Zone 1 functions.  On lines with high source to line ratios, magnitude of the steady
state fault voltage at the relay for three phase faults at the remote end of the line may be less than
the voltage required for the relay to operate.  For these conditions, the overreaching step distance
backup functions may not operate if the time delay is greater than the fixed memory time.  In
digital relays, the memory time can be made adaptive based on the fault duration.  One possible
adaptive memory logic scheme is described below.

If the positive sequence voltage is less than 10% of rated during a fault, the relay will continue to
use the pre-fault memory voltage to polarize the distance functions.  The pre-fault memory
voltage will be used until the positive sequence voltage increases above 10%, or until the fault
detector resets.  Note that the fault detector is sealed-in when any distance function is picked up.
If the relay uses positive sequence voltage polarizing for all distance units, this change will not
affect the performance for other than three phase faults because the magnitude of the positive
sequence voltage will be above 10% of nominal (≈7 V rms) for all unbalanced faults.

Adaptive Reactance Supervision
Reactance characteristics must be supervised to prevent operation under load conditions.  This
supervision may be provided by a mho distance characteristic, or the reactance characteristic may
be one boundary of a quadrilateral characteristic.  The quadrilateral characteristic limits the
resistive reach by the use of resistive blinders.  Traditionally, these supervising functions are set
based on the minimum load impedance that the relays might see in service.  An example of this
setting is shown in Figure 1; where the reach is limited by the minimum load impedance which
plots at point X.  Under light load conditions, such as indicated by the load impedance plotted at
X′, the resistive coverage is still limited by the expected maximum load flow.  With digital relays it
is now possible to modify the supervising functions based on the load flow existing on the line
rather than the expected maximum load flow.  This allows the function to have the maximum fault
resistive coverage for any given load flow.  On approach using a mho distance function with an
adaptive reach is shown in Figure 1.  The relay continually monitors the load impedance and
adjusts the reach setting of the supervising mho distance function to provide the maximum
resistive coverage while maintaining a safe margin from the load impedance.

X - ZL min

X' - ZL max

Fixed
mho

Fixed
Blinder

Adaptive mho

Reactance
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Figure 1

Adaptive Zone 1 Reach
Because a Zone 1 distance function is an unsupervised direct tripping unit, it must be designed to
have minimum transient overreach so that it can be set to cover the largest possible percentage of
the protected line, typically 90%.  Capacitive coupled voltage transformers (CCVTs) are a
common source of transients in the voltage signal which may cause overreach of a Zone 1
distance function.  Oscillations in the initial Fourier calculations for sub one cycle windows may
also introduce errors in the current and voltage phasors.  These errors in turn may cause transient
overreach.  Various solutions to the problem have been used in the past such as additional filtering
or added time delay.  Typically, this minimum overreach requirement will result in operating times
for severe close in faults that are longer than desired.  In order to overcome these errors and at
the same time provide the fastest possible operating times, an adaptive Zone 1 distance function
has been introduced.

ZLINE

FINAL REACH

INITIAL REACH

Figure 2

Unlike a traditional distance relay, the reach of the adaptive Zone 1 distance function is not
constant.  When a disturbance is detected on the power system, the reach of the Zone 1 is set to a
minimum value (0-35% of the line impedance).  As each new phaselet of current and voltage are
added to the Fourier calculation, the reach of the Zone 1 function is increased as the confidence in
the measured phasors increases.  This approach produces high speed operation for faults
occurring near the relay which will typically have the greatest affect on system stability, and
slower operation for remote faults which are less likely to affect the system stability.

COMPUTER SIMULATION
Initial verification of the performance of new Fourier calculation method and of the adaptive Zone
1 reach algorithm was accomplished using a C++ model of the algorithms and fault data captured
from an analog model power system.  The power system model is shown in Figure 3.  Over one
hundred faults were studied.  The operating times of the Zone 1 distance function provided sub
one cycle relaying for fault locations less than 75% of the line.  Average operating times for the
simulations are shown in Figure 4.
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Protected Line

Parallel Line

Z1 = 6.0 ohms @ 86 deg
Z0 = 18.3 ohms @ 76 deg

Z1S = 1.5 ohms @ 86 deg
Z0S = 1.5 ohms @ 86 deg

Z1S = 1.5 ohms @ 86 deg
Z0S = 1.5 ohms @ 86 deg

Figure 3

Figure 4

MODEL POWER SYSTEM VERIFICATION
A relay incorporating the new Fourier calculation method and the adaptive Zone 1 reach
algorithm was tested on an Analog Model Power System as shown in Figure 3 and subjected to a
wide assortment of fault types, fault locations, and load flows.  The average operating times for
the Zone 1 distance functions are shown in Figure 5.  The actual operating times of the relay
compare favorably with the operating times predicted by the PC simulation.
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Figure 5

CONCLUSION
Adaptive techniques can now be applied to the calculation of the current and voltage signals used
in digital distance relays as well as to the measuring algorithms used in the protection functions.
The adaptive features can improve the performance in speed, security, and dependability.

The combination of the Variable Window Fourier calculation and the Adaptive Zone 1 distance
function provides substantially faster operating times for previous designs of digital distance
relays.  The operating times of this new generation of digital relays are now approaching the times
available with state of the art analog designs.
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APPENDIX A

Phaselets enable the efficient computation of phasors over sample windows that are not restricted
to an integer multiple of a half cycle at the power system frequency.  Determining the fundamental
power system frequency component of current data samples by minimizing the sum of the squares
of the errors gives rise to the first frequency component of the Discrete Fourier Transform (DFT).
In the case of a data window that is a multiple of a half cycle, the computation is simply sine and
cosine weighted sums of the data samples.  In the case of a window that is not a multiple of a half-
cycle, there is an additional correction that results from the sine and cosine functions not being
orthogonal over such a window.  However, the computation can be expressed as a two by two
matrix multiplication of the sine and cosine weighted sums.

Phaselets and sum of squares are computed for each current from the output of the mimic
computations as follows:
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Phaselet aginary S imic
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PhaseletReal  =  the real part of the pth phaselet

PhaseletImaginary =  the imaginary part of the pth phaselet

N =  Number of samples per cycle
p =  phaselet index:  there are N / P phaselets per cycle
P =  the number of samples per phaselet
Imimic  =  kth sample of mimic output;  taken N samples per cycle

p

p

k

The computation of phaselets and sum of squares is basically a consolidation process.

Until a disturbance is detected, phaselets will be combined to form a one cycle sliding window
DFT.  For a one cycle DFT, the process for computing phasors from is simple, as shown in the
following equations:
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The above equations are defining.  The sums involved are not actually computed in the order
shown, but are computed recursively.  That is, after initialization, the sums at one value of "n" is
computed from the previous sums by adding the newest terms of the new sums and subtracting
the oldest terms of the old sums.

Converting phaselets to phasors can also be done for other window sizes by adding phaselets and
then multiplying by a normalization matrix.  First the phaselets are added together over the
desired window:
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Where:
W = window size in samples; W/P is the window size in phaselets

Phaselet sums are converted into stationary phasors by multiplying by a pre-computed matrix:
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Note that the matrix elements depend on W, n, P, and N. P and N are design constants. W and n
are variables.  Matrix elements are pre-computed for each combination of n and W.  With 8
phaselets per cycle, there are 64 different matrices.


