GE Grid Solutions

iSTAT M2x2 Centrale de Mesure Standard M212, M232

Manuel

Référence de publication: M2x2/FR/M/C

MANIPULATION DES MATÉRIELS ELECTRONIQUES

Les mouvements ordinaires d'une personne peuvent facilement générer des potentiels électrostatiques de plusieurs milliers de volts. La décharge de ces tensions dans des semiconducteurs lors de la manipulation de circuits électroniques peut provoquer des dégâts importants, qui ne sont pas immédiatement visibles mais qui nuiront à la fiabilité du circuit.

Quand ils sont dans leur boîtier, les circuits électroniques des produits sont totalement protégés contre les décharges électrostatiques. Ne prenez pas le risque de détériorer les modules en les retirant inutilement.

Chaque module comporte une protection maximale de ses semi-conducteurs. Toutefois, s'il faut retirer un module, prenez les précautions suivantes afin de préserver la fiabilité et la durée de vie du matériel prévues lors de sa conception et de sa fabrication.

- 1. Avant de retirer un module, placez-vous au même potentiel électrostatique que l'équipement en touchant le boîtier.
- 2. Manipulez le module par sa face avant, son cadre ou par les bords du circuit imprimé. Évitez de toucher les composants électroniques, les circuits imprimés ou les connecteurs.
- 3. Ne remettez pas le module à une autre personne sans vous être assuré que vous êtes tous deux au même potentiel électrostatique. Serrez-vous la main pour vous mettre au même potentiel.
- 4. Placez le module sur une surface antistatique ou sur une surface conductrice qui est au même potentiel que vous-même.
- 5. Rangez et transportez le module dans un sachet conducteur.

Des informations complémentaires sur les procédures de sécurité du travail pour tous les appareils électroniques figurent dans les normes BS5783 et CEI 60147-0F.

Pour effectuer des mesures sur un circuit électronique interne d'un équipement en service, il est préférable de se mettre à la terre en se reliant au boîtier par un bracelet conducteur.

La résistance à la terre du bracelet doit être comprise entre 500 k Ω et 10 M Ω . Si vous ne disposez pas de bracelet, vous devez rester en contact régulier avec le boîtier pour éviter toute accumulation d'électricité statique. Les instruments qui utilisables pour les mesures doivent si possible être à la terre par une liaison au boîtier.

Il est recommandé lors des examens approfondis ou des modifications un circuit électronique dans une pièce spéciale (voir les normes BS5783 ou CEI 60147-0F).

1. SÉCURITÉ

Pour votre sécurité, veuillez lire ces consignes avant toute intervention sur l'équipement.

1.1 Hygiène et sécurité

Les consignes de sécurité décrites dans ce document sont destinées à garantir la bonne installation et utilisation des équipements et d'éviter tout dommage. Toutes les personnes directement ou indirectement concernées par l'utilisation de cet équipement doivent connaître ces consignes de sécurité.

1.2 Signification des symboles

La signification des symboles et des étiquettes apposés sur l'équipement ou figurant dans la documentation est indiquée ci-dessous.

2. INSTALLATION, MISE EN SERVICE ET MAINTENANCE

Â

Raccordements du matériel

Le personnel chargé de l'installation, de la mise en service et de l'entretien de ce matériel doit appliquer les procédures adéquates pour garantir la sécurité d'utilisation du matériel. Avant d'installer, de mettre en service ou d'entretenir le matériel, consultez les chapitres correspondants dans la documentation technique.

Les borniers peuvent présenter pendant l'installation, la mise en service ou la maintenance, une tension dangereusement élevée si l'isolation électrique n'est pas effectuée.

Si l'accès à l'arrière de l'équipement n'est pas verrouillé, tout le personnel doit faire extrêmement attention aux dangers possibles d'électrocution ou de libération d'énergie.

Les raccordements de tension et de courant doivent être effectués à l'aide de bornes isolées à sertir pour respecter les exigences d'isolation des borniers et remplir ainsi les conditions de sécurité. Pour veiller à ce que les bornes des fils soient correctes, il faut utiliser la borne à sertir et l'outil adaptés à la taille du fil conducteur.

Avant de mettre l'équipement sous tension, il doit être relié à la terre au moyen de la borne de terre de protection, ou de la terminaison prévue sur la prise d'alimentation dans le cas où le matériel est alimenté par une prise. L'absence ou la déconnexion de la terre présentent un danger.

La section minimale recommandée pour le fil de terre est égale à 2.5 mm², sauf contreindication dans les caractéristiques techniques.

Avant de mettre l'équipement sous tension, effectuez impérativement les contrôles suivants :

- Tension nominale, fréquence et polarité
- Rapport TP et ordre des phases
- Caractéristiques nominales du circuit de TC et sécurité des connexions
- Caractéristiques nominales des fusibles de protection
- Intégrité du branchement à la terre (le cas échéant)
- Tension d'alimentation

3. CONDITIONS DE FONCTIONNEMENT

Le fonctionnement de l'équipement doit respecter les exigences électriques et environnementales décrites dans ce document.

3.1 Entrées de courant

N'ouvrez pas le circuit secondaire d'un TC sous tension : sa tension élevée constitue un danger mortel et peut détériorer l'isolant.

3.2 Résistances externes

S'il y a des résistances électriques montées sur les relais, elles peuvent présenter un risque d'électrocution ou de brûlures si on les touche.

3.3 Remplacement des piles

Lorsque des piles internes sont montées, vous devez les remplacer par des piles du type recommandé et respecter la polarité correcte pour éviter toute détérioration éventuelle de l'équipement. La pile montée dans les M233, M243 et M253 est de type Varta CR2032 SLF ou équivalent. Sa durée de vie estimée est de 6 ans.

3.4 Test d'isolement et de tenue diélectrique

A la suite d'un test d'isolement, les condensateurs peuvent rester chargés d'une tension potentiellement dangereuse. A l'issue de chaque partie du test, la tension doit être progressivement ramenée à zéro afin de décharger les condensateurs avant de débrancher les fils de test.

3.5 Insertion de modules et de circuits imprimés

Ces éléments ne doivent pas être montés ou déposés de l'équipement sous tension, ce qui pourrait l'endommager.

3.6 Communication par fibre optique

Lorsque des systèmes de communication par fibre optique sont montés, il est impératif de ne pas les regarder directement. Des appareils de mesure de la puissance optique doivent être utilisés pour déterminer le fonctionnement ou le niveau des signaux du dispositif optique.

4. ANCIENS PRODUITS

Réglages électriques

Pour les matériels qui nécessitent des réglages physiques pour modifier le courant ou la tension de fonctionnement, il est indispensable de couper l'alimentation électrique avant d'effectuer la modification pour éviter tout risque d'électrocution.

Réglages mécaniques

L'alimentation électrique des contacts de l'équipement doit être coupée avant de contrôler tout réglage mécanique pour éviter tout risque d'électrocution.

Relais en boîtiers extractibles

Le démontage de l'enveloppe d'un équipement comportant des ensembles électromécaniques peut exposer des pièces dangereuses sous tension (ex. contacts de relais).

Insertion et dépose de cartes d'extension

Pour utiliser une carte d'extension, celle-ci ne doit pas être insérée ou déposée de l'équipement lorsqu'elle est sous tension pour éviter tout risque d'électrocution. Une carte d'extension peut présenter des tensions dangereuses.

Insertion et dépose de prises de test de forte intensité

Pour utiliser une prise de test de forte intensité, les liaisons en court-circuit du TC doivent être placées avant le montage ou la dépose pour éviter la présence de tensions potentiellement mortelles.

5. DEPOSE ET DESTRUCTION DES EQUIPEMENTS

- A Mise hors service définitive : Le circuit d'alimentation auxiliaire du relais peut comporter des condensateurs sur l'alimentation ou à la terre. Pour éviter tout risque d'électrocution ou tout autre danger électrique, après avoir complètement isolé les alimentations des relais (les deux pôles d'une alimentation CC quelconque), les condensateurs doivent être déchargés en toute sécurité par les bornes extérieures avant la mise hors service.
 - Élimination : Il est recommandé d'éviter l'incinération du produit et de le jeter dans des cours d'eau. L'élimination et le recyclage de l'équipement et de ses composants doit se faire dans le plus strict respect des règles de sécurité et de l'environnement. Avant l'élimination, retirez les piles en prenant les précautions qui s'imposent pour éviter tout risque d'électrocution. Respectez les réglementations en vigueur concernant l'élimination des piles au lithium.

6. CARACTERISTIQUES TECHNIQUES

6.1 Calibre des fusibles de protection

L'intensité nominale maximale des fusibles externes de protection de cet équipement est égale à 16 A (type à voyant ou équivalent), sauf en cas de contre-indication dans la partie Caractéristiques techniques de la documentation.

Classe d'isolement :	CEI 601010-1: 2002 Classe I EN 61010-1: 2002 Classe II	
Catégorie d'isolement (surtension) :	CEI 601010-1: 2002 Catégorie II (600V), III (300V) EN 61010-1: 2002 Catégorie II (600V), III (300V)	
Environnement :	CEI 601010-1: 2002 Degré de pollution 2 (600V), 3 (300V)	La conformité est démontrée par rapport à des normes de sécurité génériques.
	EN 61010-1: 2002 Degré de pollution 2 (600V), 3 (300V)	
Sécurité du produit :	72/23/EEC & 2006/95/EC	Conforme à la directive de la commission européenne sur les basses tensions.
עכ	EN 61010-1: 2002	La conformité est démontrée par rapport à des normes de sécurité génériques.

TABLE DES MATIÈRES

1.	SÉCURITÉ	1
1.1	Hygiène et sécurité	1
1.2	Signification des symboles	1
2.	INSTALLATION, MISE EN SERVICE ET MAINTENANCE	2
3.	CONDITIONS DE FONCTIONNEMENT	3
3.1	Entrées de courant	3
3.2	Résistances externes	3
3.3	Remplacement des piles	3
3.4	Test d'isolement et de tenue diélectrique	3
3.5	Insertion de modules et de circuits imprimés	3
3.6	Communication par fibre optique	3
4.	ANCIENS PRODUITS	4
5.	DEPOSE ET DESTRUCTION DES EQUIPEMENTS	5
6.	CARACTERISTIQUES TECHNIQUES	6
6.1	Calibre des fusibles de protection	6
7.	INTRODUCTION	11
7.1	Généralités	11
7.2	Gamme	13
7.3	Mesures	13
7.4	Caractéristiques matérielles	13
7.5	Communication et entrées/sorties	14
7.6	Fonctionnalités utilisateur	14
7.7	Applications	15
8.	MODES SYSTÈME	16
8.1	Mode de connexion	16
8.1.1	Mesures possibles	16
8.2	Mode puissance	18
8.3	Quadrants d'énergie de fonctionnement	18
9.	INSTRUMENTATION	20
9.1	Mesures	20
9.2	Glossaire	20
9.3	Mesures gérées	21

Page 8	/74	istat M2x2
9.3.1	Tension	22
9.3.2	Courant	22
9.3.3	Fréquence	22
9.3.4	Harmoniques	23
9.4	Puissance, facteur de puissance et énergie	23
9.4.1	Puissance	23
9.4.2	Facteur de puissance	23
9.4.3	Énergie	23
9.4.4	Mesures de demande	23
10.	MATÉRIEL	25
10.1	Connexion	25
10.2	Communications	25
10.3	Entrées et sorties	26
10.3.1	Sorties à impulsion d'énergie	26
10.3.2	Tarification (entrées)	27
10.3.3	Contacts d'alarme (sorties)	27
10.4	Alimentation auxiliaire	27
11.	DIALOGUE OPERATEUR - STRUCTURE DU MENU	28
11.1	Introduction au menu	28
11.2	Navigation dans le menu Mesures	30
11.3	Navigation dans le menu Paramètres	32
11.4	Navigation dans le menu Réinitialisations	34
11.5	Navigation dans le menu Infos	34
11.6	Navigation dans le menu installation	35
11.7	Réglages par défaut	35
12.	FONCTIONS MATÉRIELLES	36
12.1	Assistant d'installation	36
12.2	Cycle de démo	40
13.	REGLAGES	41
13.1	Navigation dans le menu Paramètres	41
13.2	Navigation dans le menu Général	41
13.3	Navigation dans le menu LCD	42
13.4	Navigation dans le menu Sécurité	43
13.5	Entrées et sorties	45
14.	COMMUNICATIONS	48
14.1	Ports de communication	48
14.2	Logiciel de paramétrage et de surveillance QDSP	48
14.3	Modbus	48

15.	CARACTERISTIQUES TECHNIQUES	49
16.	SCHÉMAS DE RACCORDEMENT ET DIMENSIONS DES BOÎTIERS	53
17.	DOCUMENTS CONNEXES	57
18.	ANNEXE A: PROTOCOLE MODBUS	58
18.1	Protocole de communication Modbus	58
18.2	Inscription Carte des mesures réelles	58
18.3	Tableau de registre aux mesures normalisées réelles	60
18.4	Table de registre pour les paramètres de base	63
18.5	Types de données de décodage	64
19.	ANNEXE B: CALCULS ET ÉQUATIONS	66
19.1	Définitions des symboles	66
19.2	Equations	66

M2x2/FR M/C

Page 10/74

Manuel Utilisateur

istat M2x2

PAGE BLANCHE

7. INTRODUCTION

7.1 Généralités

M2x2 est une gamme exhaustive de centrales de mesures destinées plus particulièrement aux segments de marché moyenne tension et industrie à travers le monde. L'utilisateur peut sélectionner dans la gamme le modèle le plus adapté à ses besoins et en personnaliser les fonctions pour répondre aux conditions particulières du site.

Les centrales de mesure de la gamme **M2x2** intègrent plusieurs fonctions de mesure, de surveillance, d'enregistrement et de comptage dans un seul équipement pour la gestion complète d'un réseau électrique. L'utilisation de techniques numériques fournit une très large plage de mesures dynamiques ainsi qu'une très grande précision des paramètres instantanés et intégrés d'un réseau électrique. La **M2x2** offre :

- Une solution rentable pour les marchés moyenne tension et industriels
- Les protocoles Modbus qui permettent son intégration dans des systèmes de la gestion de l'énergie et de contrôle-commande.
- Des assistants d'installation de raccordement erroné, des écrans de démonstration et un afficheur personnalisable rendent la gamme M2x2 ergonomique.
- Un menu multilingue (Anglais, Allemand, Danois, Français, Espagnol, Slovène et Russe)
- La certification CE

La **M2x2** utilise un logiciel appelé **QDSP**, disponible en deux versions : QDSP Standard et QDSP Professional. Il est recommandé d'utiliser le logiciel QDSP lorsque cela est possible car il permet de communiquer avec le produit par l'intermédiaire d'une interface simple. Le manuel du QDSP est disponible séparément.

- **QDSP Standard** permet le paramétrage et la surveillance de tous les équipements iSTAT communicants : i400, i500, M2x1 et **M2x2** et M2x3.
- **QDSP** offre également des fonctionnalités additionnelles, telles que la mise à jour à partir d'un site internet sécurisé de **QDSP** et des centrales de mesure.

Page 12/74

MESSAGES CLEF

- La gamme ISTAT M2x2 est facile à configurer et à tester. Dans les postes électriques, l'accroissement du nombre de paramètres augmente les risques d'erreurs de réglage et de mesures incorrectes. L'assistant d'installation de la centrale ISTAT M2x2 minimise le risque de paramétrage incorrect en aidant l'exploitant à configurer l'équipement.
- La centrale ISTAT **M2x2** est un choix **économique** pour les applications de mesure, avec une gamme qui permet à l'utilisateur d'adapter la centrale de mesure et ses fonctions à l'application.
- La centrale ISTAT **M2x2 s'installe facilement**, grâce à ses transformateurs de courant intégrés et une alarme de raccordement erroné pour les circuits de courant. Selon les différents marchés, elle est montée dans un boîtier DIN de 96 mm.
- La M2x2 peut être connectée à des systèmes basés sur MODBUS, protocoles largement utilisés par les clients de l'industrie et de l'énergie dans le monde entier.

ISTAT – LA référence de plate-forme de mesure

- De multiples fonctions de configuration avancées sont livrées en série.
- Choix exhaustif de fonctionnalités pour les applications de mesure pour satisfaire à toutes les applications de comptage, de mesure, d'enregistrement de données et de qualimétrie
- Logiciel de configuration souple (**QDSP**) permettant le paramétrage hors ligne et en ligne, ainsi que l'interprétation des donnée
- Documentation complète et instructive. **QDSP** inclut également une aide en ligne.

Facile à installer, facile à paramétrer, facile à connecter

- Boîtier 96mm DIN normalisé
- Assistant d'installation pour faciliter la configuration
- Détection de raccordement erroné
- Écrans de démonstration
- Écrans personnalisables par l'utilisateur

Technologie avancée

- Taux d'échantillonnage élevé : 128 échantillons par période
- Gamme de fréquences de 16 2/3 Hz, 45/65 Hz ou 400 Hz

Économique

- Alimentation électrique universelle pour toutes les situations de sites
- Les dimensions communes des boîtiers permettent la rénovation des installations sans entraîner de modification majeure du panneau.

7.2 Gamme

La gamme iSTAT M2x2 contient :

- Le M212, compteur de puissance de classe 0.5 et compteur d'énergie de classe 1, non communicant. Le M212 mesure l'énergie des quatre quadrants et inclut des options matérielles pour des entrées tarifaires et des sorties de contact impulsionnels.
- La M232, centrale de mesure de classe 0.5 communicante. Le M232 ajoute une communication du série et les alarmes (sortie en option) à la M212

Logiciels :

• **QDSP Standard** : paramétrage et surveillance

7.3 Mesures

La gamme **M2x2** correspond parfaitement aux applications nécessitant la surveillance continue d'un réseau monophasé ou triphasé.

- M212 : signalisation locale pour mesures de puissance sur tableau de distribution ca, intégration des mesures d'énergie dans un système distant de gestion de l'énergie via des sorties à impulsion
- M232 : signalisation locale et à distance pour mesures de puissance sur tableau de distribution ca, intégration des mesures d'énergie dans un système distant de gestion de l'énergie via des sorties à impulsions ou de communications.

Le tableau 7-1 fournit un résumé des mesures disponibles. Les M2x2 peuvent être configurés par l'utilisateur pour des raccordements monophasés ou triphasés.

Tableau 7-1 : MESURES	M212	M232
V, Ι, Ρ, Q, S, PF, PA, F, φ	٠	٠
Energie kWh class 1	٠	٠
Demande maximale	•	٠
THD	•	٠

7.4 Caractéristiques matérielles

La gamme **M2X2** offre nombre de caractéristiques matérielles conçues pour faciliter au maximum l'installation, la mise en service et l'utilisation des compteurs, voir tableau 7-2.

Elle est équipée d'un écran à cristaux liquides (LCD) de grandes dimensions, 128 x 64 pixels, qui peuvent afficher les informations avec plusieurs tailles de texte. Cet écran est rétro-éclairé pour pouvoir être utilisé dans des conditions de faible luminosité. Le menu se pilote localement à l'aide d'un clavier à 5 touches en face avant de l'équipement. Les fonctions associées les touches et l'afficheur peuvent être personnalisés afin de permettre à l'utilisateur d'accéder rapidement aux informations.

Le **M2x2** est équipé par un voyant LED indiquant le flux d'énergie et les alarmes actives (M232 uniquement).

Le **M2x2** est équipé d'une source auxiliaire alternative ou universelle et d'une entrée courant et tension. Ils peuvent donc être utilisés dans la plupart des conditions de sites sans qu'il soit nécessaire de les spécifier à la commande.

Page 14/74

Tableau 7-2 : MATÉRIEL	M212	M232
Grand afficheur LCD rétro- éclairé 128 x 64	٠	•
LED de signalisation d'alarme	۲	•
Menu piloté par pavé de navigation à 5 touches	•	•
Calibrage automatique des entrées de tension et de courant	٠	•
Alimentation AC/DC	٠	۲
4 compteurs d'énergie	٠	٠

7.5 Communication et entrées/sorties

Le M232 est équipé en standard avec soit les communications RS232/RS485 supportant le protocole Modbus RTU.

Les **M2x2** dispose de deux modules matériels arrière, module 1 est toujours équipé de sorties de contact d'impulsion qui le **M232** peut également être utilisé comme sorties d'alarme si des impulsions sont pas nécessaires. Entrées tarifaires sur le module 2 sont disponibles en option.

Tableau 7-3 : COMMUNICATIONS I/O	M212	M232
RS232 or RS485		٠
Modbus RTU		٠
2 contacts impulsionnels	٠	٠
2 entrées tarifaires	۲	۲
2 contacts d'alarme		۲

7.6 Fonctionnalités utilisateur

La gamme **M2X2** offre diverses fonctionnalités utilisateur conçues pour simplifier l'installation et la mise en service. Ces fonctionnalités sont résumées au tableau 7-4 ci-après.

L'assistant d'installation guide l'utilisateur parmi les réglages de base requis pour mettre en service les **M2x2**. L'avantage de cet assistant est qu'il guide l'ingénieur de mise en service au travers de tous les réglages de base requis pour installer les **M2x2**, garantissant ainsi l'installation correcte.

Les **M2x2** surveillent la polarité de la tension et du courant, et, lorsque ils détectent que le raccordement d'une entrée est erroné, il affiche un symbole d'alarme sur l'afficheur. Cette fonctionnalité est utile lorsque le sens est important, comme dans les applications d'énergie, pour garantir que les valeurs calculées sont correctes.

Les **M2x2** fournissent de nombreuses mesures différentes que l'exploitant peut faire défiler et lire sur l'afficheur. Si l'exploitant désire ne visualiser qu'un petit nombre de mesures, il peut configurer l'afficheur de façon à montrer jusqu'à 3 écrans personnalisés. L'intervalle de rafraîchissement peut être programmé pour laisser à l'exploitant le temps nécessaire à l'interprétation des informations affichées.

Tableau 7-4 : FONCTIONNALITÉS UTILISATEUR	M212	M232
Assistant de configuration	•	•
Détection de raccordement erroné	•	•
3 écrans personnalisables	•	•
Écrans de démonstration	٠	•

7.7 Applications

En fonction des modèles, la gamme M2x2 peut être utilisée dans une vaste gamme d'applications, elles sont décrites au tableau 7-5 ci-dessous.

Tableau 7-5 : APPLICATION	M212	M232
Mesures de puissance	٠	٠
Comptage d'énergie	۲	•
Alarmes programmables		•
Logiciel PC		•

Mesures de puissance : Tous les équipements M2x2 fournissent une vaste gamme de valeurs analogiques instantanées : tension, courant, puissance, déphasage, facteur de puissance et fréquence. Ces mesures sont disponibles en local sur tous les équipements de la gamme M2x2, et à distance pour M232.

Comptage et sous-comptage d'énergie: Avec l'ajout de la mesure des 4 quadrants d'énergie, la M2x2 peut être utilisées dans les applications de sous-comptage lorsque l'information est transmise à un système de gestion de l'énergie pour surveiller les performances d'un réseau électrique alternatif. La M2x2 peut utiliser une combinaison de contacts à impulsion d'énergie, des entrées tarifaires analogiques et des communications pour s'intégrer à un système de contrôle-commande et lui fournir ces données.

8. MODES SYSTÈME

8.1 Mode de connexion

Le mode de connexion de la ${\bf M2x2}$ est configurable par menu. Les options suivantes sont disponibles :

- 1b connexion monophasée
- 3b connexion triphasée, 3 fils avec charge équilibrée
- 4b connexion triphasée, 4 fils avec charge équilibrée
- 3u connexion triphasée, 3 fils avec charge déséquilibrée
- 4u connexion triphasée, 4 fils avec charge déséquilibrée

8.1.1 Mesures possibles

Les tableaux suivants répertorient les mesures possibles pour chaque type de connexion.

Légende : ● – mesuré, O – calculé, × – non géré

Tableau 8-1 : MESURES DE	Paramòtro	Unitó	Type de connexion					
BASE	Farametre	Unite	1b	3b	3u	4b	4u	
Tension U ₁	U1	V	•	×	×	•	•	
Tension U ₂	U2	V	×	×	×	0	•	
Tension U₃	U3	V	×	×	×	0	•	
Tension moyenne U~	Ux	V	×	×	×	0	•	
Courant I ₁	l1	Α	•	•	•	•	•	
Courant I ₂	12	Α	×	0	•	0	•	
Courant I ₃	13	Α	×	0	•	0	•	
Courant In	In	Α	×	0	0	0	•	
Courant total It	Ι	Α	•	0	0	0	•	
Courant moyen I _{moy}	Imoy	Α	×	0	0	0	•	
Puissance active P ₁	P1	W	•	×	×	•	•	
Puissance active P ₂	P2	W	×	×	×	0	•	
Puissance active P ₃	P3	W	×	×	×	0	•	
Puissance active totale Pt	Р	W	•	•	•	0	•	
Puissance réactive Q1	Q1	var	•	×	×	•	•	
Puissance réactive Q ₂	Q2	var	×	×	×	0	•	
Puissance réactive Q ₃	Q3	var	×	×	×	0	•	
Puissance réactive totale Qt	Q	var	•	•	•	0	•	

	Tableau 8-2 : MESURES	Doromàtro	Para		Туре о	de coni	nexion	
	DE BASE	Falametre	mètre	1b	3b	3u	4b	4u
	Puissance apparente S ₁	S1	VA	•	×	×	•	•
	Puissance apparente S ₂	S2	VA	×	×	×	0	•
	Puissance apparente S ₃	S3	VA	×	×	×	0	•
	Puissance apparente totale St	S	VA	•	•	•	0	•
	Facteur de puissance PF1	PF1/ePF1		•	×	×	•	•
	Facteur de puissance PF2	PF2/ePF2		×	×	×	0	•
	Facteur de puissance PF ₃	PF3/ePF3		×	×	×	0	•
	Facteur de puissance totale PF [~]	PF/ePF		•	•	•	0	•
	Angle de facteur de puissance φ1	φ1	o	•	×	×	•	•
se	Angle de facteur de puissance ϕ_2	φ2	o	×	×	×	0	•
Pha	Angle de facteur de puissance ϕ_3	φ3	o	×	×	×	0	٠
	Angle de facteur de puissance total ϕ	φ	o	•	•	•	0	٠
	DHT de la tension de phase U _{f1}	U1%	%THD	•	×	×	•	•
	DHT de la tension de phase U _{f2}	U2%	%THD	×	×	×	0	•
	DHT de la tension de phase $U_{\rm f3}$	U3%	%THD	×	×	×	0	•
	DHT du courant de phase ${\rm I_1}$	I1%	%THD	•	•	•	•	•
	DHT du courant de phase ${ m I_2}$	I2%	%THD	×	0	•	0	•
	DHT du courant de phase $I_{\rm 3}$		%THD	×	0	•	0	•
	Tension composée U ₁₂	U12	V	×	•	•	0	•
	Tension composée U ₂₃	U23	V	×	•	•	0	•
	Tension composée U ₃₁	U31	V	×	•	•	0	•
Ise	Tension composée moyenne (U _{ff})	UΔ	V	×	×	×	0	•
-pha	Déphasage φ ₁₂	φ12	0	×	×	×	0	•
ie-to	Déphasage φ ₂₃	φ23	0	×	×	×	0	•
has	Déphasage φ ₃₁	φ31	0	×	×	×	0	•
щ	DHT de la tension composée THD _{U12}	U12%	%THD	×	•	•	0	•
	DHT de la tension composée THD _{U23}	U23%	%THD	×	•	•	0	٠
		U31%	%THD	×	•	•	0	•

Page 18/74

	Tableau 8-2 : MESURES	: MESURES Paramètre Para		Type de connexio				
	DE BASE	Parametre	mètre	1b	3b	3u	4b	4u
Energie	Compteurs 1-4	E1, E2, E3, E4	Wh Vah varh	•	•	•	•	•
ш	Tarif actif	Atar		•	•	•	•	•
/aleurs maximales DM	Courant DM I_1	I1	А	×	0	•	0	•
	Courant DM I ₂	I2	А	×	0	•	0	•
	Courant DM I ₃	I3	А	•	•	•	•	•
	Puissance active DM P (positive)	P+	W	•	•	•	•	•
	Puissance active DM P (négative)	P-	W	•	•	•	•	•
	Puissance réactive DM Q-L	Qm	var	•	•	•	•	•
-	Puissance réactive DM Q-C	Q ‡	var	•	•	•	•	٠
	Puissance apparente DM S	S	VA	•	•	٠	٠	•

Légende : ● – mesuré, O – calculé, × – non géré

NOTE : Pour les modes de connexion 3b et 3u, seules les tensions composées sont mesurées. De ce fait, un facteur $\sqrt{3}$ est appliqué au calcul de la qualité basé sur la tension de phase nominale. Pour le mode de connexion 4u, le support de mesure est le même que pour 1b.

8.2 Mode puissance

Le mode puissance est utilisé pour signer les mesures de puissance. L'utilisateur ne peut pas régler le mode puissance de la centrale **M2x2**. Il est défini comme suit :

- Pour l'affichage de la puissance active, le signe + indique la puissance exportée (consommateur) ; le signe indique la puissance importée (générateur).
- Pour l'affichage de la puissance réactive, un symbole de bobine indique une charge inductive (consommateur); un symbole de condensateur indique une charge capacitive (générateur).

8.3 Quadrants d'énergie de fonctionnement

Les quadrants d'énergie de fonctionnement déterminent les types d'énergie pris en compte par les compteurs d'énergie. L'utilisateur peut modifier les quadrants d'énergie de fonctionnement via l'interface de communication à distance ou à l'aide du menu et des boutons en face avant.

FIGURE 8-1 : FLUX D'ÉNERGIE

9. INSTRUMENTATION

9.1 Mesures

Avec l'augmentation des harmoniques présentes dans les systèmes électriques actuels du fait de l'utilisation croissante des charges électroniques (ordinateurs, variateurs de fréquence, etc.), il est important, pour surveiller précisément les paramètres électriques, d'utiliser une technique de mesure qui tient compte de leur présence. Les méthodes de mesure classiques, qui font appel à une technique de détection moyenne, répondent à la moyenne du signal électrique d'entrée. La précision obtenue n'est satisfaisante que lorsque le signal électrique d'entrée est proche d'une sinusoïde pure.

La centrale **M2x2** utilise une technique de mesure de valeur efficace réelle donnant des mesures précises jusqu'à l'harmonique de rang 63. La **M2x2** prélève 128 échantillons par période et calcule la valeur efficace réelle à partir de ces valeurs échantillonnées.

L'écran de la **M2x2** peut afficher les valeurs mesurées dans un certain nombre de vues par défaut. Alternativement, l'utilisateur peut personnaliser l'affichage. La figure 9.1 ci-après en montre un exemple.

FIGURE 9-1 : ÉCRAN PREDEFINI, MONTRANT LA TENSION, LE COURANT ET LA PUISSANCE DE LA PHASE 1

9.2 Glossaire

Les termes et symboles suivants sont utilisés :

Tableau 9-	Tableau 9-1 : SYMBOLES					
Mv	Facteur d'échantillonnage					
MP	Intervalle de calcul de moyenne					
U _f	Tension de phase (U_1 , U_2 ou U_3)					
U _{ff}	Tension composée (U ₁₂ , U ₂₃ ou U ₃₁)					
Ν	Nombre total d'échantillons par période					
n	Numéro d'échantillon ($0 \le n \le N$)					
х, у	Numéro de phase (1, 2 ou 3)					
İn	Échantillon de courant n					
U _{fn}	Échantillon de tension de phase n					
U _{fFn}	Échantillon de tension composée n					
φf	Angle de facteur de puissance entre le courant et la tension de phase $(\phi_1, \phi_2 \text{ or } \phi_3)$					
Uu	Déséquilibre de tension					
Uc	Tension d'alimentation contractuelle					

Tableau 9-2 : GLOSSAIRE				
Terme	Explication			
Eff.	Valeur efficace			
Flash	Type de module mémoire qui conserve son contenu en cas de perte d'alimentation			
MODBUS	Protocole industriel de transmission de données			
QDSP	Logiciel destiné à la gamme iSTAT			
CA	Tension alternative			
AP	Angle de facteur de puissance (déphasage courant- tension)			
FP	Facteur de puissance			
DHT	Distorsion harmonique totale			
DM	Mesure des valeurs moyenne sur un intervalle de temps			
Harmonique de tension - harmonique	Sinus tension avec fréquence égale à un multiple entier de la fréquence de base			
Lieu de transfert	Point de raccordement de l'installation du client au réseau public			
Facteur d'échantillonnage (M _v)	Définit le nombre de périodes pour le calcul de mesure sur la base de la fréquence mesurée			
Intervalle de calcul de moyenne (M _p)	Définit la fréquence de rafraîchissement des mesures affichées sur la base d'un facteur d'échantillonnage			

9.3 Mesures gérées

Les tableaux suivants répertorient les mesures disponibles pour chaque modèle M2x2.

	Tableau 9-3 : MESURES DE BASE
	Tension U_1 , U_2 , U_3 en U^{\sim}
	Courant I ₁ , I ₂ , I ₃ , I _n , I _t en I _a
	Puissance active P_1 , P_2 , P_3 , et P_t
	Puissance réactive Q1, Q2, Q3, et Qt
Phase	Puissance apparente S_1 , S_2 , S_3 , et S_t
	Facteur de puissance PF ₁ , PF ₂ , PF ₃ et PF [~]
	Angle de facteur de puissance ϕ_1,ϕ_2,ϕ_3 et ϕ^{\sim}
	DHT de la tension de phase U_{f1} , U_{f2} et U_{f3}
	DHT de l'angle de facteur de puissance I_1, I_2 et I_3
se	Tension composée U ₁₂ , U ₂₃ , U ₃₁
ase-pha	Tension composée moyenne U _{ff}
	Déphasage φ12, φ23, φ31
Рh	DHT de la tension composée
ergi	Compteur 1

Page 22/74

iSTAT M2x2

Tableau 9-3 : MESURES DE BASE
Compteur 2
Compteur 3
Compteur 4
Total
Tarif actif

	Tableau 9-4 : AUTRES MESURES
Valeurs maxi. DM	Courant de phase I ₁
	Courant de phase l ₂
	Courant de phase l₃
	Puissance active P (positive)
	Puissance active P (négative)
	Puissance réactive Q – L
	Puissance réactive Q – C
	Puissance apparente S
	Fréquence f
	Température interne

9.3.1 Tension

Toutes les versions de **M2x2**, à l'exception des versions triphasées à 3 fils, mesurent la valeur efficace réelle des tensions simples (Ua, Ub, Uc) connectées à l'équipement. Les trois tensions composées (Uab, Ubc, Uca), la tension simple moyenne (U) et la tension composée moyenne (U_{Δ}) sont calculées à partir de ces paramètres mesurés. Pour les réseaux triphasés, 3 fils équilibrés, la **M2x2** crée un neutre virtuel en interne.

Les versions triphasées à 3 fils de la **M2x2** mesurent la valeur efficace réelle de la tension composée.

Toutes les mesures de tension sont disponibles par l'intermédiaire de la communication et sur l'écran LCD.

9.3.2 Courant

La centrale **M2x2** mesure la valeur efficace réelle des courants de phase (Ia, Ib, Ic) connectés à l'unité. Le courant de neutre (I_n), la moyenne de tous les courants de phase et la somme de tous les courants de phase (I_t) sont calculés à partir des trois courants de phase.

Toutes les mesures actuelles sont disponibles par l'intermédiaire de la communication et sur l'écran LCD.

9.3.3 Fréquence

La fréquence du réseau se calcule à partir de la période de la tension mesurée. Il est possible de l'afficher sur l'écran de la **M2x2** et par l'intermédiaire de la liaison de communication à distance..

9.3.4 Harmoniques

Le pourcentage de distorsion harmonique totale (%DHT) est le rapport entre la somme des puissances des fréquences harmoniques (to 32nd) supérieures à la fréquence fondamentale et la puissance de la fréquence fondamentale. Cette somme des puissances est une somme géométrique obtenue en prenant la racine carrée de la somme des carrés des amplitudes de chaque harmonique.

La centrale **M2x2** fournit les valeurs %DHT de chaque courant de phase, tension de phase et pour les tensions composées.

9.4 Puissance, facteur de puissance et énergie

9.4.1 Puissance

La centrale **M2X2** fournit des mesures précises de la puissance active (P_a , P_b , P_c , P_t), de la puissance réactive (Q_a , Q_b , Q_c , Q_t) et de la puissance apparente (S_a , S_b , S_c , S_t). Pour un système 4 fils, les puissances sont calculées séparément pour chaque phase, ainsi que sous forme de total. Pour un système 3 fils, les mesures ne portent que sur les valeurs de puissance totale.

Tous les paramètres d'alimentation disponibles peuvent être visibles sur l'écran LCD ou via le lien de communication à distance.

9.4.2 Facteur de puissance

Le facteur de puissance est le quotient de la puissance active et de la puissance apparente pour chaque phase séparément ($\cos\varphi a$, $\cos\varphi b$, $\cos\varphi c$) et en tant que total ($\cos\varphi t$). Un signe + et un symbole de bobine correspondent à une charge inductive (consommateur) : un signe – et un symbole de condensateur définissent une charge capacitive (générateur). Pour un affichage correct des PF par l'application de l'alarme, l'EPF (facteur de puissance étendue) est appliquée. Il illustre facteur de puissance avec une valeur telle que décrite dans le tableau ci-dessous. Pour un affichage sur l'écran LCD et l'autre ont la fonction d'affichage d'égalité: entre -1 et -1 avec l'icône de charge inductive ou capacitive.

Charge	С	\rightarrow		←	L
Angle [°]	-180	-90	0	+90	+180 (179.99)
PF	-1	0	1	0	-1

Tous les paramètres disponibles facteur de puissance peuvent être lus à partir de l'écran LCD ou via la liaison de communications à distance.

9.4.3 Énergie

Quatre compteurs permettent de mesurer l'énergie dans chacun des quatre quadrants. Il est possible d'adapter la configuration des compteurs en fonction des besoins du client, par l'intermédiaire du menu en face avant ou de la liaison série de communication à distance.

Les quatre mesures d'énergie sont visibles sur l'écran de la centrale M2x2 ou par l'intermédiaire de la liaison de communication à distance.

9.4.4 Mesures de demande

Les **M2x2** fournissent des valeurs de demande maximale à partir de diverses valeurs de demande moyenne thermique.

Les **M2x2** enregistrent la demande maximale depuis la dernière réinitialisation ainsi que l'horodatage. L'équipement affiche également la demande maximale présente ou "dynamique".

9.4.4.1 Demande thermique

L'option de demande thermique fournit une caractéristique thermique exponentielle en fonction du principe d'élément bimétal. La demande maximale et l'heure d'apparition sont mémorisées dans l'équipement.

Les valeurs maximales et l'heure de leur apparition sont mémorisées dans la **M2x2**. Une constante de temps (c.t.) peut être réglée de 1 à 255 minutes et est égale à 6 fois la constante de temps thermique (c.t. = 6^* constante de temps thermique).

Exemple :

Mode : Fonction thermique Constante de temps : 8 min. DM courante et DM maximale : RAZ à 0 min.

10. MATÉRIEL

FIGURE 10-1 : VUE ARRIERE DU BOITIER M2X2

10.1 Connexion

Les entrées de tension de la m2x2 peut être connecté directement à un réseau à basse tension ou par l'intermédiaire d'un transformateur de tension pour un réseau à haute tension.

Des entrées de courant sont obtenues par m2x2 qui alimente le câble de transport de courant à travers un trou dans les transformateurs de courant. La connexion du réseau est effectuée par l'intermédiaire d'un transformateur de courant correspondant.

Le m2x2 dispose d'une entrée automatique avec un courant nominal de 5A et soit une entrée de tension fixe moins nominalement 63.5V ou une entrée de tension automatique (en option) à 500V nominal.

Depuis le m2x2 dispose également d'un mode de connexion entièrement configurable les informations par défaut est représenté par 4u (triphasé, 4 fils non équilibré) et le schéma de connexion par défaut affiche également.

Schémas de raccordement pour les différentes structures de réseau sont affichés dans la section 16

10.2 Communications

Le **M232** peut être livrée avec un port de communication RS232/RS485 qui doit être spécifié au moment de la commande. Le **M232** prend en charge MODBUS RTU et permet d'afficher les mesures à distance et d'afficher et régler les paramètres du réseau.

La longueur maximale du câble utilisé pour les communications RS232 est de 15 mètres.

Les communications RS485 à deux fils permettent la connexion simultanée de 32 équipements communicants (maximum) sur des distances de 1 000 mètres. Pour les grandes distances, il peut s'avérer nécessaire de raccorder une résistance d'extrémité (120 ohms) entre les deux fils aux extrémités éloignées du réseau câblé.

Page 26/74

Les informations de connexion sont illustré au tableau 10-1.

	Bornes	Position	Direction de données	Description
RS232	21Tx 22 23Rx	21	De	Transmission des données Tx)
		22	-	Echouage (上)
		23	Vers	Réception des données (Rx)
RS485	21 A 22 C 23 B	21	Vers/De	A
		22	-	Ne pas connecter!
		23	Vers/De	В

TABLEAU 10-1 : CONNEXIONS RS232/RS485

10.3 Entrées et sorties

Les **M2x2** peuvent comporter deux modules matériels situés à l'arrière du boîtier. LE module 1 est toujours équipé de sorties de contact d'impulsion qui cela peut également être utilisé au M232 comme sorties d'alarme si des impulsions sont pas nécessaires. Entrées tarifaires sont disponibles en option sur le module 2.

Tableau 10-2 : OPTIONS D'E/S	M212	M232
2 contacts impulsionnels	•	•
2 entrées tarifaires	•	•
2 contacts d'alarme		•

Puisque chaque module matériel est indépendant de l'autre, les **M2x2** peuvent être fournies avec deux modules différents (par exemple 2 contacts impulsionnels et 2 contacts d'alarme) ou avec deux modules similaires (par exemple 4 sorties analogiques ou 4 entrées tarifaires).

Le module matériel E/S 1 utilise les bornes 15/16/17 et le module 2 les bornes 18/19/20.

10.3.1 Sorties à impulsion d'énergie

Les deux sorties à impulsions sont toujours ajustés au **M2x2** et peuvent servir à la surveillance externe de la consommation d'énergie. La mesure d'énergie via les sorties à impulsions correspond à la mesure d'énergie de base sur l'écran de la centrale **M2x2**. Il est possible d'adapter la mesure d'énergie de la sortie à impulsions en fonction des besoins du client, par l'intermédiaire de la liaison de communication à distance.

TABLEAU 10-3 : CONTACTS IMPULSIONNELS DOUBLES

Le module matériel comporte trois bornes (voir tableau 10-3), les contacts impulsionnels partagent une connexion commune mais chaque contact peut être activé individuellement. Lorsque les deux modules matériels comportent des contacts impulsionnels.

10.3.2 Tarification (entrées)

Les 2 entrées tarifaires peuvent servir à la signalisation de périodes de tarification différentes. Ils sont un module d'option qui doit être définie au moment de la commande..

Le module matériel comporte trois bornes (voir tableau 10-4), la tension de l'entrée tarifaire est fixée à 230Vca ± 20% et partage une connexion commune mais chaque entrée peut être activée individuellement. Lorsque les deux modules matériels comportent sont utilisés pour des applications de tarification, la **M2x2** fournit un maximum de 4 entrées indépendantes.

TABLEAU 10-4 : ENTREES TARIFAIRES

10.3.3 Contacts d'alarme (sorties)

Les sorties d'impulsions d'énergie de M232 peuvent être éventuellement programmé pour les conditions d'alarme de sortie si les impulsions de sortie ne sont pas nécessaires. Les alarmes peuvent être définies à l'aide QDSP via le lien de communication à distance

Le port matériel comporte trois bornes (voir tableau 10-5), les contacts d'alarme partagent une connexion commune mais chaque contact peut être configuré individuellement.

TABLEAU 10-5 : CONTACTS D'ALARME

10.4 Alimentation auxiliaire

Les équipements de la gamme M2x2 peuvent être fournis avec soit une source auxiliaire CA devant être spécifiée à la commande, soit avec une source auxiliaire universelle CA/CC. Les options suivantes sont disponibles :

Paramètre	Source auxiliaire universelle
Tension nominale CA	48 – 230V ac
Fréquence	40 – 65Hz
Tension nominale CC	20 – 300Vdc
Consommation	< 5 VA

TABLEAU 10-6	: ALIMENTATION	AUXILIAIRE
--------------	----------------	------------

TABLEAU 10-7: CONTACTS D'ALIMETATION

11. DIALOGUE OPERATEUR - STRUCTURE DU MENU

11.1 Introduction au menu

Les réglages, les mesures et les fonctions de la centrale **M2x2** sont accessibles sur la face avant ou par l'intermédiaire de la liaison de communication à distance (M232 uniquement). Les cinq touches de la face avant permettent de naviguer dans les différents menus de **M2x2**, comme illustré à la figure 11-1 ci-dessous :

FIGURE 11-1 : VUE DE LA FACE AVANT DU M232

Dans ce chapitre, les symboles ci-dessous à l'intérieur des schémas indiquent qu'il faut appuyer sur la touche correspondante sur la face avant.

Touche	Gauche	Droite	Bas	Haut	Entrée
Symbole	<	>	\checkmark	•	ОК

Dans ce chapitre, les symboles ci-dessous à l'intérieur des schémas correspondent à l'information affichée sur l'écran LCD.

Touche	Verrouillé par mot de passe	Détection de raccor- dement erroné	Touches de navigation	Source auxiliaire faible
Symbole	8	¥	Ø	¢

Page 29/74

A la livraison, le mot de passe de niveau 1 de la centrale **M2x2** est AAAA. Le mot de passe de niveau 2 n'est pas prédéfini. Les mots de passe AAAA n'offrent aucun niveau de protection : il est donc possible de modifier toutes les mesures et tous les réglages. Les mots de passe AAAA doivent être modifiés pour activer la protection par niveau de mot de passe.

Lorsque la centrale **M2x2** est connectée pour la première fois au réseau électrique, le message de bienvenue de la Figure 11-2a ci-dessus s'affiche. Cette information restera affichée quelques secondes avant de passer au menu principal, voir Figure 11-2b ci-dessous.

L'écran est divisé en 3 parties séparées par deux lignes horizontales : Haut, Principal et Bas. Le Haut de l'écran indique le nom de l'écran principal, le Bas fournit des informations spécifiques à l'écran et l'écran Principal montre les fonctions appartenant à cette page de menu.

Le bas de l'écran affiche cycliquement la date & l'heure, la température et l'adresse du site internet.

Menu principal	Figure 11-2b
Mesures	Affichage du Menu principal
Réglages	
Réinitialisations	
Info	
Installation	
01.05.2006 12:43:36	Affichage du bas de l'écran

Lors de la mise sous tension ou pendant l'exploitation, le menu principal de la M2x2 est accessible via la touche OK, comme illustré à la figure 11-2b. Il offre 6 options : Mesures, Réglages, Réinitialisations, Carte MMC, Info (Informations) et Installation. La navigation s'effectue en pressant les touches BAS ✓ ou HAUT ▲, puis en pressant la touche **OK** pour valider une sélection. Le menu est circulaire. A partir de "Installation", une pression sur la touche BAS sélectionne "Mesures".

iSTAT M2x2

11.2 Navigation dans le menu Mesures

La figure 11-3 illustre la structure du menu Mesures. L'utilisateur peut explorer les 7 menus disponibles à l'aide des touches de direction, en pressant les touches BAS \checkmark ou HAUT \bigstar , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \lt permet de retourner au Menu principal.

	Figure 11-3
Mesures	Nom du menu
Valeurs actuelles	Affichage du menu Mesures
Alarmes	
Cycle démo	
<- Menu principal	Retour au Menu principal

La figure 11-4 illustre la structure du menu Valeurs actuelles. L'utilisateur peut explorer les 10 menus disponibles à l'aide des touches de direction, en pressant les touches BAS \vee ou HAUT \wedge , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \prec permet de retourner au menu Mesures.

	Figure 11-4	
Valeurs actuelles	Nom du menu	
Tension	Affichage du menu Valeurs	
Courant	presentes	
Puissance		
FP & angle puiss.		
Fréquence		
Énergie		
Valeurs DM		
TGH		
Personnalisation		
Vue d'ensemble		
<- Menu principal	Retour au <mark>Menu principal</mark>	
M2x2/	FR	M/C
-------	----	-----
-------	----	-----

iSTAT M2x2

Page 31/74

Le tableau 11-1 illustre la structure des informations du menu Mesures. L'utilisateur peut explorer tous les menus disponibles à l'aide des touches de direction. La touche **OK** permet de retourner au menu Mesures.

	Information	≺Gauche								Droite≻
*	Tension		Tension phase	Tension ligne						
	Courant	Courant moyen	Courant phase							
	Puissance	W, VA et VAr total	W par phase	VA par Phase	VAr par phase					
	FP & angle puiss.	FP total Angle puissance total	FR par Phase	Angle puissance par phase						
	Fréquence	Fréquence								
	Énergie	Compteurs 1 & 2	Compteurs 3 & 4	Historique compteur 1	Historique compteur 2	Historique compteur 3	Historique compteur 4			
	Valeurs DM	w	w	var	var	VA	lphase1	lphase2	lphase3	
	TGH	Courant de phase	Tension phase	Tension ligne						
	Personnalisation	Défini par l'utilisateur 1	Défini par l'utilisateur 2	Défini par l'utilisateur 3						
•	Vue d'ensemple	Tension, courant, Watts et VArs	Tension, courant, Watts et VArs	Tension, courant, Watts et VArs						

TABLEAU 11-1 : STRUCTURE DES INFORMATIONS DU MENU MESURES

Page 32/74

iSTAT M2x2

La figure 11-5 illustre la structure du menu Réglages. L'utilisateur peut explorer les 8 menus disponibles à l'aide des touches de direction, en pressant les touches BAS \checkmark ou HAUT , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \triangleleft permet de retourner au Menu principal.

	Figure 11-5
Paramètres	Nom du menu
Général	Affichage du menu Paramètres
Connexion	
Communication	
LCD	
Sécurité	
Énergie	
Entrées/Sorties	
<- Menu principal	Retour au Menu principal

istat M2x2

Le tableau 11-2 illustre la structure des informations du menu Réglages. L'utilisateur peut explorer tous les menus disponibles à l'aide des touches de direction. La touche **OK** permet de retourner au menu Réglages. Quels réglages seront affichés dépendra du modèle et des modules optionnels installés.

(≪Gauche						Droite≯
*	Général	Connexion	Communication	LCD	Sécurité	Énergie	Entrées/Sorties
	Langue	Mode de connexion	Adresse équipement	Contraste	Mot de passe niv. 1	Tarif actif	E/S 1
	Unité température	Primaire TP	Vitesse de transmission	Exp.rétro-éclairage	Mot de passe niv.2	Commune exposant	E/S 2
	Temps constant DM	Secondaire TP	Parité	Périod cycle demo	Heur block mot de passe	Compteur LED	E/S 3
	Intervalle moyen	Primaire TC	Bits d'arrêt	Temps rétro-élairage	Vérr. instrument	No. D'impulsion LED	E/S 4
>		Secondaire TC		Écran pers. 1	Déverr. instrument		
				Écran pers. 2			
				Écran pers. 3			

TABLEAU 11-2 : STRUCTURE DES INFORMATIONS DU MENU REGLAGES

Page 34/74

11.4 Navigation dans le menu Réinitialisations

La figure 11-6 illustre la structure du menu <u>Réinitialisations</u>. L'utilisateur peut explorer les 6 menus disponibles à l'aide des touches de direction, en pressant les touches BAS▼ ou HAUT▲, puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE◀ permet de retourner au <u>Menu principal</u>.

	Figure 11-6
Réinitialisations	Nom du menu
Valeurs Min/Max	Affichage du menu
Valeurs DM	Reinitialisations
DM dern. période	
Réinit. sortie al.	
<- Menu principal	Retour au Menu principal

Le tableau 11-3 illustre la structure des informations du menu Réinitialisations. L'utilisateur peut explorer tous les menus disponibles à l'aide des touches de direction. La touche **OK** permet d'accéder réglage individuels. La touche GAUCHE permet de retourner au de retourner au menu Réinitialisations.

	•			*
•	Compteurs énergie	Valeurs DM	DM dern. période	Réinit. sortie al.
	Tous les compteurs d'énergie	Non/Oui	Non/Oui	Non/Oui
	Compteur d'énergie E1			
	Compteur d'énergie E2			
	Compteur d'énergie E3			
	Compteur d'énergie E4			

TABLEAU 11-3 : STRUCTURE DES INFORMATIONS DU MENU REINITIALISATIONS

11.5 Navigation dans le menu Infos

La figure 11-7 illustre l'écran Identification produit. Il s'agit de l'écran par défaut affiché lors de la mise sous tension. Cet écran ne retourne pas automatiquement au menu principal. L'utilisateur doit donc presser la touche GAUCHE < pour retourner au Menu Principal.

M232	
Analyseur Réseau	

Figure 11-7

Identification produit

Affichage initial à la mise sous tension et écran d'information

La figure 11-8 illustre la structure du menu Informations produit. Pour visualiser ces informations, presser la touche BASY ou la touche HAUTA. La touche GAUCHE permet de retourner au Menu principal.

	Figure 11-8
Info	Informations produit
N° série: MCxxxxxx	
Ver. log.: 0.29	
Ver. mat.: A	
Date : 14.08.2009	
Exéc.: 0d 14h 47'	
<- Menu principal	Retour au <mark>Menu principal</mark>

Les informations affichées sur l'écran Informations produit sont les suivantes :

N° série: MCxxxxxx : numéro de série de la centrale M2x2.

Ver. log.: 0.60 : version du logiciel embarqué dans la centrale M2x2

Ver. mat: b : version matérielle de la centrale M2x2

Date: 14.04.2006 : date de la dernière mise à jour du logiciel embarqué de la M2x2

Exéc.: 0d 14h 47' : heure de la dernière mise à jour du logiciel embarqué de la M2x2

11.6 Navigation dans le menu installation

La figure 11-9 illustre la structure du menu Installation. La touche **OK** permet d'effectuer une sélection. La touche GAUCHE ← permet de retourner au Menu principal.

de l'Assistant
allation
lenu principal/

L'assistant d'installation est décrit au paragraphe 12.1.

11.7 Réglages par défaut

La centrale **M2x2** est fournie avec les réglages par défaut suivants. Ces réglages peuvent être modifiés sur l'IHM en face avant ou via la communication à distance. Il est recommandé d'utiliser l'assistant d'installation pour activer la configuration de base.

Langue	Anglais
Date & Heure	Non réglé
Mode, TC et TP	1b, non réglé
Mot de passe	Non réglé (niveau 1 = AAAA)
Compteurs et registres	Réglés à zéro
Communication	115 200 bps, adresse 33, sans parité, 2 bits d'arrêt

12. FONCTIONS MATÉRIELLES

12.1 Assistant d'installation

L'assistant d'installation est conçu pour guider l'utilisateur dans les réglages de base requis pour mettre en service les **M2x3**. La touche **OK** permet de paramétrer les fonctions suivantes : Langue, Date, Heure, Mode de connexion, Primaire TP, Secondaire TP, Primaire TC, Secondaire TC, Adresse équipement, Vitesse, Parité, Bit d'arrêt.

L'assistant d'installation est situé dans le menu principal. Appuyez sur **OK** pour activer l'assistant.

	Figure 12-1
Installation	
Bienvenue dans	Affichage de l'Assistant
l'assistant d'installation.	d'installation
Appuyez sur OK pour continuer	
<- Menu principal	Retour au Menu principal
a figure 12-2 illustre la structure du réglage Langue	. La sélection s'effectue en pressant les

La figure 12-2 illustre la structure du réglage Langue. La sélection s'effectue en pressant les touches BAS \vee ou HAUT \wedge jusqu'à ce que la langue souhaitée s'affiche, puis en pressant la touche **OK** pour valider sa sélection.

Langue		Figure 12-2
		Affichage du réglage Langue
English		
O Francais		
O Deutsch		
O Español		
O Russian		
O Danois		
O Italian		
O US English		
OK Sélectio	nner	

Page 37/74

La figure 12-3 illustre la structure du réglage Mode de connexion. La sélection s'effectue en pressant les touches BAS v ou HAUT ∧ jusqu'à ce que le mode de connexion souhaité s'affiche, puis en pressant la touche OK pour valider sa sélection. La touche GAUCHE < permet de retourner au menu de réglage de la langue.

	Figure 12-3
Connexion	
	Affichage du réglage Connexion
• 1b (1W)	
O 3b (1W3)	
O 4b (1W4)	
O 3u (2W3)	
O 4u (3W4)	
OK Sélectionner	

La figure 12-4 illustre la structure du réglage **Primaire TP**. La position du curseur est indiquée par un trait de soulignement. Presser les touches DROITE≻ ou GAUCHE< pour déplacer le curseur. Les modifications se font en pressant les touches BAS▼ et HAUT▲ jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. Lorsque le curseur se trouve sous un séparateur décimal, les unités d'ingénierie (V, KV) peuvent être modifiées. La touche GAUCHE< permet de retourner au menu Mode de connexion.

Figure 12-4
Affichage du réglage Primaire TP

La figure 12-5 illustre la structure du réglage Secondaire TP. La position du curseur est indiquée par un trait de soulignement. Presser les touches DROITE> ou GAUCHE< pour déplacer le curseur. Les modifications se font en pressant les touches BASV et HAUTA jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche OK pour confirmer. La touche GAUCHE< permet de retourner au menu Primaire TP.

	Figure 12-5
Secondaire TP	
_110.0V	Affichage du réglage Secondaire TP
OK Sélectionner	

La figure 12-6 illustre la structure du réglage **Primaire TC**. La position du curseur est indiquée par un trait de soulignement. Presser les touches DROITE≻ ou GAUCHE< pour déplacer le curseur. Les modifications se font en pressant les touches BASV et HAUTA jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. Lorsque le curseur se trouve sous un séparateur décimal, les unités d'ingénierie (A, KA) peuvent être modifiées. La touche GAUCHE< permet de retourner au menu Secondaire TP.

	Figure 12-6
Primaire TC	
	Affichage du réglage Primaire TC
_2800.0A	
OK Sélectionner	

La figure 12-7 illustre la structure du réglage Secondaire TC. La position du curseur est indiquée par un trait de soulignement. Presser les touches DROITE> ou GAUCHE< pour déplacer le curseur. Les modifications se font en pressant les touches BASV et HAUTA jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche OK pour confirmer. La touche GAUCHE< permet de retourner au menu Primaire TC.

	Figure 12-7
Secondaire TC	
_5.0A	Affichage du réglage Secondaire TC
OK Sélectionner	

La figure 12-8 illustre la structure du réglage Adresse équipement. La position du curseur est indiquée par un trait de soulignement. Presser les touches DROITE≻ ou GAUCHE < pour déplacer le curseur. Les modifications se font en pressant les touches BAS v et HAUT jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. La touche GAUCHE permet de retourner au menu Secondaire TC. L'adresse par défaut est 33.

Figure 12-8

Affichage du réglage Adresse équipement

La figure 12-9 illustre la structure du réglage <mark>Vitesse</mark>. Les modifications se font en pressant les touches BAS▼ et HAUT▲ jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. La touche GAUCHE◀ permet de retourner au menu Adresse équipement.

Page 39/74

M2x2

Vitesse

9600 bits/s

19200 bits/s

38400 bits/s

57600 bits/s

0 115200 bits/s

La figure 12-10 illustre la structure du réglage Parité. Les modifications se font en pressant les touches BAS▼ et HAUT▲ jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. La touche GAUCHE◄ permet de retourner au menu Vitesse de transmission.

La figure 12-11 illustre la structure du réglage Bit d'arrêt. Les modifications se font en pressant les touches BAS▼ et HAUT▲ jusqu'à ce que le réglage souhaité s'affiche, puis en pressant la touche **OK** pour confirmer. La touche GAUCHE◄ permet de retourner au menu Parité.

Figure 12-11

Affichage du réglage Bit d'arrêt

La figure 12-12 illustre l'écran **Installation terminée**. Appuyer sur **OK** pour confirmer toutes les modifications et terminer l'installation.

12.2 Cycle de démo

Cette fonction permet de naviguer parmi un certain nombre d'écrans qui affichent les diverses fonctionnalités offertes par la M2x2. La figure 12-13 illustre la structure du menu Mesures. L'utilisateur peut explorer les 7 menus disponibles à l'aide des touches de direction, en pressant les touches BAS▼ ou HAUT▲, puis en pressant la touche **OK** pour sélectionner le menu Cycle démo.

	Figure 12-13
Mesures	Nom du menu
Valeurs actuelles	Affichage du menu Mesures
Alarmes	
Cycle démo	
<- Menu principal	Retour au Menu principal

La figure 12-14 illustre la structure du réglage Cycle démo. La touche OK permet d'activer la fonction Cycle démo.

	Figure 12-14
Mesures	Nom du menu
Période cycle	Réglage Cycle démo
4 sec,	
Appuyer sur OK	
<- Mesures	Retour au menu Mesures

La fonction Cycle démo affiche les différentes fonctionnalités de la M2x2.

- Page d'informations
- Compteur d'identifier
- Groupes d'alarmes et états
- Valeurs actuelle, maximale et minimale de la tension
- Valeurs actuelle, maximale et minimale du courant
- Valeurs de l'énergie
- Valeurs de demande maximale
- Informations de THD

La touche OK permet de désactiver la fonction Cycle démo.

13. REGLAGES

L'assistant d'installation décrit au paragraphe 12.1 est conçu pour guider l'utilisateur dans les réglages de base requis pour mettre en service les **M2x2**. La touche **OK** permet de paramétrer les fonctions suivantes :

Langue

Date & Heure

Mode de connexion, Primaire TP, Secondaire TP, Primaire TC, Secondaire TC

Adresse équipement, Vitesse, Parité, Bit d'arrêt

Toutes ces fonctions peuvent être paramétrées individuellement à partir du menu Réglages. Chaque réglage est décrit dans les paragraphes qui suivent.

13.1 Navigation dans le menu Paramètres

La figure 13-1 illustre la structure du menu Réglages. L'utilisateur peut explorer les 6 menus disponibles à l'aide des touches de direction, en pressant les touches BAS \checkmark ou HAUT , puis en pressant la touche OK pour valider une sélection. La touche GAUCHE \lt permet de retourner au Menu principal.

	Figure 13-1
Réinitialisations	Nom du menu
Général	Affichage du menu
Connexion	Reinitialisations
Communication	
LCD	
Sécurité	
Énergie	
Entrées/Sorties	
<- Menu principal	Retour au Menu principal

13.2 Navigation dans le menu Général

La figure 13-2 illustre la structure du menu Général. L'utilisateur peut explorer les 7 menus disponibles à l'aide des touches de direction, en pressant les touches BAS \checkmark ou HAUT , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \lt permet de retourner au menu Réglages.

iSTAT M2x2

La figure 12-2 au paragraphe Assistant d'installation montre comment sélectionner la langue. La langue sélectionnée est affichée en bas de l'écran lorsque le curseur est positionné sur l'option de langue.

La figure 13-3 illustre le réglage **Unité température**. L'utilisateur peut choisir entre Centigrade et Fahrenheit comme unité de mesure. La touche **OK** permet de retourner au menu **Général**.

La figure 13-4 illustre le réglage Temps constant DM. L'utilisateur peut régler la constante de temps de 1 à 255 minutes. Pour faire défiler les options, presser les touches BAS vou HAUT▲. La touche OK permet de retourner au menu Général.

	Figure 13-4
Temps constant DM	Nom du menu
_15 min.	Affichage du réglage Temps constant DM
OK Sélectionner	Retour au menu <mark>Général</mark>

La figure 13-5 illustre le réglage Intervalle moyen. L'utilisateur peut choisir entre 6 réglages différents, de 8 à 256 périodes. Pour faire défiler les options, presser les touches BAS vou HAUT▲. La touche **OK** permet de retourner au menu Général.

13.3 Navigation dans le menu LCD

La figure 13-6 illustre la structure du menu LCD. L'utilisateur peut explorer les 7 réglages disponibles à l'aide des touches de direction, en pressant les touches BAS v ou HAUT A, puis en pressant la touche OK pour valider une sélection. La touche GAUCHE < permet de retourner au menu Réglages.

	Figure 13-6
LCD	Nom du menu
Contraste	Affichage du menu LCD
Rétro-éclairage	
Exp. rétro-éclairage	
Période cycle démo	
Écran pers. 1	
Écran pers. 2	
Écran pers. 3	
-3	Retour au menu <mark>Réglages</mark>

Contraste : s'ajuste en pressant les touches BAS v ou HAUT iusqu'à ce que le contraste désiré soit atteint. La plage de réglage est –10 à +10, 0 étant la valeur normale. Appuyer sur la touche **OK** pour confirmer la sélection. La valeur numérique est affichée en bas de l'écran lorsque le réglage **Contraste** est sélectionné, cf. figure 7.4.1. ci-dessus.

Rétro-éclairage : s'ajuste en pressant les touches BAS▼ ou HAUT▲ jusqu'à ce que l'éclairage désiré soit atteint. La plage de réglage est –10 à +10. Appuyer sur la touche **OK** pour confirmer la sélection. La valeur numérique est affichée en bas de l'écran lorsque le réglage **Rétro-éclairage** est sélectionné.

Exp. rétro-éclairage : s'ajuste en pressant les touches BAS ✓ ou HAUT ▲ jusqu'à ce que le réglage du délai de mise en veille désiré soit atteint. La plage de réglage est 0 à 60 minutes. Appuyer sur la touche **OK** pour confirmer la sélection. La valeur numérique est affichée en bas de l'écran lorsque le réglage **Exp. rétro-éclairage** est sélectionné.

Période cycle démo : s'ajuste en pressant les touches BAS ✓ ou HAUT ▲ jusqu'à ce que le réglage de la durée de la période désirée soit atteint. La plage de réglage est 1 à 60 secondes. Appuyer sur la touche OK pour confirmer la sélection. La valeur numérique est affichée en bas de l'écran lorsque le réglage Période cycle démo est sélectionné.

La figure 13-7 illustre la structure du menu **Ecran** personnalisé. L'utilisateur peut personnaliser 3 écrans pour y afficher les informations importantes. La mesure désirée se sélectionne en pressant les touches BAS \vee ou HAUT \wedge , puis en pressant la touche **OK** pour confirmer. Les touches DROITE \rightarrow et GAUCHE \prec servent à déplacer le curseur jusqu'à la mesure suivante. La touche **OK** permet confirmer la sélection et de retourner au menu **ECD**.

LCD			Figure 13-7 Nom du menu
U1	U2	U3	Affichage du menu LCD
OK Sélectionner		Retour au menu LCD	

13.4 Navigation dans le menu Sécurité

La figure 13-8 illustre la structure du menu Sécurité. L'utilisateur peut explorer les 5 réglages disponibles à l'aide des touches de direction, en pressant les touches BAS \checkmark ou HAUT \land , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \lt permet de retourner au menu Réglages.

Page 44/74

	Figure 13-8
Sécurité	Nom du menu
Mot de passe niv. 1	Affichage du menu Sécurité
Mot de passe niv. 2	
Heure bloc mot passe	
Verr. instrument	
Déverr. instrument	
Non réglé	Retour au menu Réglages

La figure 13-9 illustre le réglage Mot de passe niv. 2. L'utilisateur peut modifier le mot de passe (long de 4 caractères) en pressant les touches BAS \checkmark ou HAUT \land , puis en pressant la touche **OK** pour valider une sélection. La touche GAUCHE \lt permet de retourner au menu Sécurité. Le mot de passe de niveau 1 a la même structure.

	Figure 13-9
Mot de passe niv. 2	Nom du menu
<u>A</u> * **	Affichage du menu Sécurité
OK Sélectionner	Retour au menu Sécurité

Il existe 3 niveaux de sécurité :

L0 – aucun mot de passe nécessaire. L'utilisateur peut visualiser et modifier tous les réglages de la M2x2.

L1 – mot de passe niveau 1 : Remise à zéro de toutes les mesures de demande maximale, des compteurs d'énergies.

L2 – mot de passe niveau 2 : l'utilisateur ne peut modifier aucun réglage sans saisir de mot de passe.

Si le mot de passe est perdu ou oublié, l'utilisateur devra demander à GE Grid Solutions le mot de passe attribué en usine. Pour ce faire, l'utilisateur doit communiquer à GE Grid Solutions le numéro de série de l'instrument.

Heure bloc mot passe : s'ajuste en pressant les touches BAS ✓ ou HAUT ▲ jusqu'à ce que le réglage de la durée de blocage du mot de passe désirée soit atteint. La plage de réglage est 0 à 60 minutes. Appuyer sur la touche **OK** pour confirmer la sélection. La valeur numérique est affichée en bas de l'écran lorsque le réglage Heure bloc mot passe est sélectionné.

Verr. instrument : cette sécurité s'active en saisissant le mot de passe. Il s'ajuste en pressant les touches BAS ✓ ou HAUT ▲ jusqu'à ce que chaque caractère désiré soit atteint, puis DROITE > et GAUCHE < pour changer de position. Appuyer sur la touche OK pour confirmer la sélection. Le texte Niveau activé est affiché en bas de l'écran lorsque le réglage Verr. instrument ou Déverr. instrument est sélectionné.

Energie de navigation

La figure 13-10 illustre la structure du menu de l'énergie. L'utilisateur peut naviguer à travers les menus disponibles à l'aide des touches de direction, en appuyant les touches BAS ✓ ou HAUT ▲, puis appuyez sur la touche OK pour faire une sélection. La clé GAUCHE < est enfoncée pour revenir au menu Réglage.

	Figure 13-10
Energie	
Tarif Active	Menu d'énergie
Commune en. Exposant	
Tariff 1	Retour au Menu principal

La figure 13-11 illustre la structure tarifaire active le menu. L'utilisateur peut naviguer à travers les menus disponibles à l'aide des touches de direction, en appuyant les touches BAS▼ ou HAUT▲, puis appuyez sur la touche OK pour faire une sélection. La clé est GAUCHE◄ enfoncée pour revenir au menu Réglage

	Figure 13-11
Tarif active	
• Tarif d'entrée	Tarif Active
O Tarif 1	
O Tarif 2	
O Tarif 3	
O Tarif 4	
O Horloge Tarif	
OK Select	Retour au Menu principal

Figure 13-12 illustre la structure de menu commune en.exposent. L'utilisateur peut naviguer à travers les 5 menus disponibles à l'aide des touches de direction, en appuyant les touches BAS▼ ou HAUT▲, puis appuyez sur la touche OK pour faire une sélection. La GAUCHE◄ est enfoncée pour revenir au menu de l'énergie.

	Figure 13-12
Commune en. exposant	
● -3 0.001W (Var, VA)	Commune en.exposant
O -2 0.01W (Var, VA)	
O -1 0.1W (Var, VA)	
O 0 1W (Var, VA)	
O +1 0.01kW (Var, VA)	
O +2 0.1kW (Var, VA)	
O +3 1kW (Var, VA)	
O +4 0.1MW (Var, VA)	
OK Select	Retour au Menu principal

13.5 Entrées et sorties

La figure 13-13 illustre la structure du menu Réglages. L'utilisateur peut sélectionner les options d'Entrée/Sortie en pressant les touches BAS vou HAUT A, puis en pressant la touche OK pour sélectionner Entrées/Sorties. La touche GAUCHE < permet de retourner au Menu principal.

Page 46/74

	Figure 13-13
Paramètres	
Général	Affichage des Entrées/Sorties
Date & Heure	
Connexion	
Communication	
LCD	
Sécurité	
Énergie	
Entrées/Sorties	
<- Menu principal	Retour au Menu principal

La figure 13-14 illustre la structure du menu Entrées/Sorties. L'utilisateur peut sélectionner les options d'Entrée/Sortie en pressant les touches BAS ✓ ou HAUT ▲, puis en pressant la touche **OK** pour sélectionner. Le bas de l'écran indique quel type d'E/S est installé dans chacun des quatre modules. La touche GAUCHE ◄ permet de retourner au menu Réglages.

	Figure 13-14
Entrées/Sorties	
E/S 1	Affichage des Entrées/Sorties
E/S 2	
E/S 3	
E/S 4	
Sortie alarme relais	Retour au menu Réglages

La figure 13-15a illustre la structure du menu **Option E/S**. L'utilisateur peut sélectionner les options d'Entrée/Sortie en pressant les touches BAS \vee ou HAUT \wedge , puis en pressant la touche **OK** pour sélectionner. Le bas de l'écran indique quel type d'E/S est installé. La touche GAUCHE \checkmark permet de retourner au Menu **E/S**.

	Figure 13-15a
E/S 1	
Compteur d'énergie	Options des Entrées/Sorties
Nb. d'impulsions	
Longueur d'impulsion	
Sélecteur de tarifs	
Compteur 1	Retour au menu <mark>E/S</mark>

Le compteur d'énergie peut être défini comme une sortie d'alarme ou comme sortie d'impulsions pour le compteur 1 à 4. Par conséquent l'un des 4 registres du compteur d'énergie peut être affectée à l'une des sorties d'impulsions.

La figure 13-15a illustre le compteur de l'affichage. Le sélecteur de tarif défini pour quels tarifs de la sortie d'impulsion est actif.

Si le compteur d'énergie est défini comme une sortie d'alarme (M232 uniquement), l'écran illustré à la figure 13-15b

	Figure 13-15b
E/S 1	
Compteur d'énergie	Options des Sorties/Entrées
Groupes d'alarmes	
Signal de sortie	
Counter 1	Back to I/O menu

Lorsque la fonction d'alarme est activée, la structure du menu affiche les options des groupes d'alarmes et un signal de sortie. Le menu Groupe d'alarmes est montré à la figure 13-15c.

	Figure 13-15c
Groupes d'alarmes	
	Groupes d'alarmes
<u>G</u> 1 G2 G3 G4	
OK Sélectionner	Retour au menu Option E/S

Ce signal de sortie est doté de plusieurs options, comme illustré à la figure 13-15d. Pour faire défiler ces options, presser les touches BAS \checkmark ou HAUT \checkmark , puis appuyer sur la touche **OK** pour sélectionner.

		7	Figure 13-15d
	Signal de sortie		
-	Permanent		Signal de sortie
	O Impulsion 1 sec		
	O Toujours ON		
	O Toujours OFF		
	O Inverse normal		
-	OK Sélectionner		Retour au menu Option E/S

14. COMMUNICATIONS

14.1 Ports de communication

Les centrales M232 disposent d'un port de communication primaire (COM1) et d'un port de communications RS232/RS485.

14.2 Logiciel de paramétrage et de surveillance QDSP

Voir le manuel du QDSP pour les instructions d'installation et d'utilisation du logiciel QDSP.

14.3 Modbus

Voir ANNEXE A

15. CARACTERISTIQUES TECHNIQUES

ENTRÉES ET ALIMENTATION		
Entrée de tension	Tension nominales (Un)	500V _{L-N} / 866V _{L-L}
	Surcharge	1.2 x Un en continu
		2 x Un pendant 10s
	Plage minimale	2V sinusoïdal
	Plage maximale	600V _{L-N} , 1000V _{L-L}
	Consommation	< 0.1 VA par phase
Entrée de courant	Courant nominal (In)	5A
	Valeurs nominales (ajustement automatique)	1 A/5 A
	Surcharge	3 x In en continu 25 x In pendant 3s 50 x In pendant 1s
	Plage minimale	Courant de démarrage pour la puissance
	Plage maximale	12.5 A sinusoïdal
	Consommation	< 0.1 VA par phase
Fréquence	Fréquence nominale (Fn)	50/ 60 Hz
	Plage de mesure	16 à 400 Hz
	Valeurs nominales	10 à 1000 Hz
Alimentation	Tension nominale CA	48 à 276 Vca
Universelle	Fréquence nominale	40 à 70 Hz
	Tension nominale CC	20 à 300 Vcc
	Consommation	< 5 VA

CONNEXIONS	
Sections de conducteur autorisées	Section de conducteur maximale
Bornes de tension (4)	\leq 5mm ² pour un conducteur
Bornes de courant (3)	\leq 6 mm de diamètre pour un conducteur avec isolement
Alimentation (2)	\leq 2.5mm ² pour un conducteur
Modules (3 x 3)	\leq 2.5mm ² pour un conducteur

istat M2x2

PRÉCISION		
Courant efficace	1 A	Classe 0.5
(I1, I2, I3, Imoy, IN)	5 A	Classe 0.5
Courant maximum	12.5A	Classe 0.5
Tension simple efficace	75 V L-N	Classe 0.5
(U1, U2, U3, Umoy)	250 V L-N	Classe 0.5
	500 V L-N	Classe 0.5
Tension maximale	600V	Classe 0.5
Tension composée efficace	120 V L-L	Classe 0.5
(U12, U23, U31, Umoy)	400 V L-L	Classe 0.5
	800 V L-L	Classe 0.5
Fréquence		
F (courante)	60/50 Hz	0.01 Hz
Plage de fréquence nominale	16400 Hz	0.02 Hz
Angle de facteur de puissance	-180 à 0 à 180°	Classe 0.5
Facteur de puissance	-1 à 0 à +1	
	U = 50 à 120 % U _n	
	I = 2 % à 20 % In	Classe 2.0
	I = 20 % à 200 % In	Classe 1.0
Demande maximale	Calcul à partir de U et I	Classe 1.0
Taux d'harmoniques global	5 à 500 V	Classe 0.5
	0 à 400 %	Classe 0.5
Puissance		
W active	Calcul à partir de U et I	Classe 0.5
VAR réactive : Q, VA apparente : S	Calcul à partir de U et l	Classe 1
Énergie		
Energie active	Calcul à partir de U et I	Classe 1 à NE 62053-21
Energie réactive	Calcul à partir de U et l	Classe 2 à NE 62053-23

Remarque: Toutes les mesures sont calculées avec les signaux hauts harmoniques. Pour une tension de 65 Hz, les harmoniques jusqu'au 32e rang, sont mesurées.

Normal, impulsion ou fixe

230 V/110 V ± 20% CA

2

Page 51/74

Module tarifaire

M2x2

MODULES		
Module d'alarme	Nb. de sorties	2
	Puissance maxi. de commutation	40 VA
	Tension maxi. de commutation CA	40 V
	Tension maxi. de commutation CC	35 V
	Courant maxi. de commutation	1 A
	Isolement	1000 Vca entre contacts ouverts
		4000 Vca entre bobine et contacts
	Impulsion	4000 impulsion par heure maxi., largeur mini. 100 ms

COMMUNICATION			
	RS232	RS485	
Connexion	Directe	Réseau	
Longueur de filerie maximale	3M	1000M	
Connexion	Bornes (3 pin)	Bornes (3 pin)	
Mode de transmission	Asynchrone		
Protocole	MODBUS RTU		
Isolement	3.7 kV pendant 1 minute entre les bornes et tous les autres circuits		
Taux de transfert	1200 to 115200b/s		

Modes

Tension

Nb. d'entrées

istat M2x2

CARACTÉRISTIQUES ÉLECTRONIQUES				
LCD				
Туре	Graphique LC			
Taille	128 x 64 pixels	3		
LCD rafraîchissement	200 ms			
Temps de réponse				
Entrée – afficheur	Calculá popda	nt l'activation d'un intervalle de movenne (8 à 256		
Entrée – communication	périodes), réinitialisation (64 périodes) typique 1.28 secondes à 50 Hz			
Entrée – alarme		NZ3Z)		
LED				
Sortie d'impulsion	Rouge	Emission		
Alarme (MC330 uniquement)	Rouge	Condition d'alarme		

CARACTÉRISTIQUES DE SÉCURITÉ				
Générales	En conformité avec la norme NE 61010-1:2004			
	600 Veff., catégorie	e d'installation II		
	300 Veff., catégorie	e d'installation III		
	Degré de pollution	2		
Tension d'essai	3.7 kV, 1 minute er	n conformité avec la norme NE 61010-1:2004		
CEM	Directive de compa	atibilité électromagnétique (CEM) 2004/108/EC		
	En conformité avec la norme NE 61326-1: 1998			
Protection	En conformité avec la norme NE 60529:1997			
	Face avant : IP52			
	Face arrière : IP20)		
Conditions ambiantes	Climatiques	Classe 3, en conformité avec les normes NE 62052-11:2004 et NE 62052-11:2005		
	Température	Fonctionnement –5 à +55°C		
		Stockage –25 à +70°C		
	Humidité	= 90% HR		
	Altitude	0 à 2000 mètres		
Boîtier	DIN	Incombustibilité PC – auto-extinguible en conformité avec la norme UL94VO		
	Masse	Approx. 500g		

16. SCHÉMAS DE RACCORDEMENT ET DIMENSIONS DES BOÎTIERS

FIGURE 16-1 : CONNEXIONS

FIGURE 166-2 : SCHEMA DE CABLAGE EXTERNE : CONNEXION MONOPHASEE (1B)

FIGURE 16-3 : SCHEMA DE CABLAGE EXTERNE : CONNEXION TRIPHASEE, 3 FILS AVEC CHARGE EQUILIBREE (3B)

FIGURE 16-4 : SCHEMA DE CABLAGE EXTERNE : CONNEXION TRIPHASEE, 4 FILS AVEC CHARGE EQUILIBREE (4B)

Page 55/74

FIGURE 16-5 : SCHEMA DE CABLAGE EXTERNE : CONNEXION TRIPHASEE, 3 FILS AVEC CHARGE DESEQUILIBREE (3U)

FIGURE 16-6 : SCHEMA DE CABLAGE EXTERNE : CONNEXION TRIPHASEE, 4 FILS AVEC CHARGE DESEQUILIBREE (4U)

iSTAT M2x2

FIGURE 16-8 : DIMENSIONS DU BOITIER

17. DOCUMENTS CONNEXES

Réf.	Document
1	QDSP: Manuel du logiciel de configuration et d'analyse ISTAT

18. ANNEXE A: PROTOCOLE MODBUS

18.1 Protocole de communication Modbus

Le protocole Modbus est activé via le port de communication RS232 ou RS485 sur le M232.

Protocole Modbus permet le fonctionnement de l'appareil sur les réseaux Modbus. Pour le M232 le protocole Modbus permet point à point (par exemple appareil à un PC) via la communication RS232 et une liaison multipoint via une communication RS485.

La mémoire de référence pour les entrées et les registres de maintien est 30000 et 40000 respectivement. La plupart des dispositifs de maitrise Modbus suppose que 30001 ou 40001 est soustraite de l'adresse définie pour les registres. Le m2x2 soustrait 30000 et 40000, ce qui signifie que les adresses peuvent être compensés par 1.

Utilisation MODBUS registre 40100 (table MODBUS pour les mesures) la carte Registre requise peut être sélectionnée. Valeur "0" est compatible au registre M233 carte. Valeur "1" est compatible au registre M231 carte. Cette sélection peut également être effectuée lors de la mise en utilisant QDSP.

18.2 Inscription Carte des mesures réelles

Paramètre	Туре	M233 Compatible carte de registre		M231 Compatible carte de registre	
		Start	End	Start	End
Tension U ₁	T5	30107	30108	30044	30045
Tension U ₂	T5	30109	30110	30046	30047
Tension U₃	T5	30111	30112	30048	30049
Tension de phase moyenne U $^{\sim}$	T5	30113	30114	30042	30043
Tension entre phases U ₁₂	T5	30118	30119	30081	30082
Tension entre phases U ₂₃	T5	30120	30121	30083	30084
Tension entre phases U ₃₁	T5	30122	30123	30085	30086
Moyenne tension entre phase U_{pp}	T5	30124	30125	30079	30080
Tension I ₁	T5	30126	30127	30036	30037
Tension I ₂	T5	30128	30129	30038	30039
Tension I_3	T5	30130	30131	30040	30041
Courant total I	T5	30138	30139	30034	30035
Courant neutre In	T5	30132	30133	30074	30075
Puissance réel P ₁	Т6	30142	30143	30020	30021
Puissance réel P ₂	Т6	30144	30145	30022	30023
Puissance réel P₃	Т6	30146	30147	30024	30025
Puissance réel total P	Т6	30140	30141	30018	30019
Puissance réactive Q ₁	Т6	30150	30151	30028	30029
Puissance réactive Q ₂	Т6	30152	30153	30030	30031
Puissance réactive Q ₃	Т6	30154	30155	30032	30033
Puissance réactive total Q	Т6	30148	30149	30026	30027
Puissance apparente S ₁	T5	30158	30159	30052	30053
Puissance apparente S ₂	T5	30160	30161	30054	30055

Page 59/74

Paramètre	Туре	M233 Compatible carte de registre		M231 Compatible carte de registre	
		Start	End	Start	End
Puissance apparente totale S	T5	30156	30157	30050	30051
Facteur de puissance PF1	T7	30166	30167	30060	30061
Facteur de puissance PF ₂	T7	30168	30169	30062	30063
Facteur de puissance PF ₃	T7	30170	30171	30064	30065
Facteur de puissance total PF	T7	30164	30165	30058	30059
Angle de la puissance U₁−I₁	T2			30071	
Angle de la puissance U₁−I₁	T17	30173			
Angle de la puissance U ₂ -I ₂	T2			30072	
Angle de la puissance U ₂ -I ₂	T17	30174			
Angle de la puissance U ₃ -I ₃	T2			30073	
Angle de la puissance U₃−I₃	T17	30175			
Angle de la puissance atan2(Pt, Qt)	T2			30070	
Angle de la puissance atan2(Pt, Qt)	T17	30172			
Angle U ₁ –U ₂	T2			30076	
Angle U ₁ –U ₂	T17	30115			
Angle U ₂ –U ₃	T2			30077	
Angle U ₂ –U ₃	T17	30116			
Angle U ₃ -U ₁	T2			30078	
Angle U ₃ -U ₁	T17	30117			
Fréquence f	T5	30105	30106		
Fréquence f (mHz)	T1			30066	
THG I₁	T16	30188		30118	
THG I2	T16	30189		30119	
THG I₃	T16	30190		30120	
THG U₁	T16	30182		30112	
THG U ₂	T16	30183		30113	
THG U₃	T16	30184		30114	
THG U ₁₂	T16	30185		30115	
THG U ₂₃	T16	30186		30116	
THG U ₃₁	T16	30187		30117	
Max Dernière Réinitialisation					
DM Puissance réel P (positif)	Т6	30542	30543		
DM Puissance réel P (négatif)	Т6	30548	30549		
DM Puissance réactive Q - L	Т6	30554	30555		
DM Puissance réactive Q - C	Т6	30560	30561		
DM Puissance apparente S	T5	30536	30537		
DM tension I ₁	T5	30518	30519		
DM tension I ₂	T5	30524	30525		

Paramètre	Туре	e M233 Compatible carte de registre		M231 Compatible carte de registre	
		Start	End	Start	End
DM courant l₃	T5	30530	30531		
Valeurs moyennes dynamiques					
DM Puissance réel P (positif)	Т6	30510	30511		
DM Puissance réel P (négatif)	Т6	30512	30513		
DM Puissance réactive Q - L	Т6	30514	30515		
DM Puissance réactive Q -	Т6	30516	30517		
DM Puissance apparente S	T5	30508	30509		
DM courant I ₁	T5	30502	30503		
DM courant I ₂	T5	30504	30505		
DM courant I₃	T5	30506	30507		
Energie					
Energie Compteur 1 Exposant	T2	30401		30006	
Energie Compteur 2 Exposant	T2	30402		30007	
Energie Compteur 3 Exposant	T2	30403		30008	
Energie Compteur 4 Exposant	T2	30404		30009	
Compteur E1	Т3	30406	30407	30010	30011
Compteur E2	Т3	30408	30409	30012	30013
Compteur E3	Т3	30410	30411	30014	30015
Compteur E4	Т3	30412	30413	30016	30017
Tarif actif	T1	30405		30133	
Température interne	T17	30181		30128	

18.3 Tableau de registre aux mesures normalisées réelles

(Uniquement disponible lorsque la carte M233 registre compatible est sélectionné)

Paramòtro	MODBU	8	100% valour	
Falamette	Registre	Туре		
Tension U₁	30801	T16	Un	
Tension U ₂	30802	T16	Un	
Tension U ₃	30803	T16	Un	
Tension de phase moyenne U $^{\sim}$	30804	T16	Un	
Tension entre phases U ₁₂	30805	T16	Un	
Tension entre phases U ₂₃	30806	T16	Un	
Tension entre phases U ₃₁	30807	T16	Un	
Tension entre phase moyenne U _{pp~}	30808	T16	Un	

Page 61/74

Dovomètro	MODBUS		100% volour
Farametre	Registre	Туре	100% valeur
Courant I ₁	30809	T16	In
Courant I ₂	30810	T16	In
Courant I₃	30811	T16	In
Courant total I	30812	T16	It
Courant neutre In	30813	T16	In
Courant moyenne l [~]	30815	T16	In
Puissance réel P ₁	30816	T17	Pn
Puissance réel P ₂	30817	T17	Pn
Puissance réel P ₃	30818	T17	Pn
Puissance réel total	30819	T17	Pt
Puissance réactive Q1	30820	T17	Pn
Puissance réactive Q ₂	30821	T17	Pn
Puissance réactive Q ₃	30822	T17	Pn
Puissance réactive total Q	30823	T17	Pt
Puissance apparente S ₁	30824	T16	Pn
Puissance apparente S ₂	30825	T16	Pn
Puissance apparente S ₃	30826	T16	Pn
Puissance apparente total S	30827	T16	Pt
Facteur de puissance PF1	30828	T17	1
Facteur de puissance PF2	30829	T17	1
Facteur de puissance PF3	30830	T17	1
Facteur de puissance total PF	30831	T17	1
CAP/IND P.F. Phase 1 (PF ₁)	30832	T17	1
CAP/IND P.F. Phase 2 (PF ₂)	30833	T17	1
CAP/IND P.F. Phase 3 (PF ₃)	30834	T17	1
CAP/IND P.F. Total (PFt)	30835	T17	1
Angle de la puissance U ₁ -I ₁	30836	T17	100°
Angle de la puissance U ₂ -I ₂	30837	T17	100°
Angle de la puissance U ₃ -I ₃	30838	T17	100°
Angle de la puissance atan2(Pt, Qt)	30839	T17	100°
Angle U ₁ –U ₂	30840	T17	100°
Angle U ₂ –U ₃	30841	T17	100°
Angle U ₃ –U ₁	30842	T17	100°
Fréquence	30843	T17	Fn+10Hz
THG I1	30845	T16	100°

istat M2x2

Page 62/74

Baramàtra	MODBUS		100% valour	
	Registre Type			
THG I2	30846	T16	100°	
THG I₃	30847	T16	100°	
THG U₁	30848	T16	100°	
THG U ₂	30849	T16	100°	
THG U₃	30850	T16	100°	
THG U ₁₂	30851	T16	100°	
THG U ₂₃	30852	T16	100°	
THG U ₃₁	30853	T16	100°	
Max Dernière Réinitialisation				
DM Puissance réel P (positif)	30854	T16	Pt	
DM Puissance réel P (négatif)	30855	T16	Pt	
DM Puissance réactive Q - L	30856	T16	Pt	
DM Puissance réactive Q - C	30857	T16	Pt	
DM Puissance apparente S	30858	T16	Pt	
DM courant I ₁	30859	T16	In	
DM courant I ₂	30860	T16	In	
DM courant I ₃	30861	T16	In	
Valeurs moyennes dynamiques				
DM Puissance réel P (positif)	30862	T16	Pt	
DM Puissance réel P (négatif)	30863	T16	Pt	
DM Puissance réactive Q - L	30864	T16	Pt	
DM Puissance réactive Q - C	30865	T16	Pt	
DM Puissance apparente S	30866	T16	Pt	
DM courant I ₁	30867	T16	In	
DM courant I ₂	30868	T16	In	
DM courant I ₃	30869	T16	In	
Energie				
Energie Compteur 1	30870	T17		
Energie Compteur 2	30871	T17	Retour de valeur réel	
Energie Compteur 3	30872	T17	ae compteur MOD 2000	
Energie Compteur 4	30873	T17		
Tarif actif	30879	T1		
Température interne	30880	T17	100°	

100% de calculs des valeurs de mesure normalisées

Un =	(R401	47 / R40146) * R30015 * R40149
ln =	(R40145 / R40144) * R30017 * R40148	
Pn =	Un*In	
lt =	In	Mode de connexion: 1b
lt =	3*In	Mode de connexion: 3b, 4b, 3u, 4u
Pt =	Pn	Mode de connexion: 1b
Pt =	3*Pn	Mode de connexion: 3b, 4b, 3u, 4u
Fn =	R4015	50

Registre	Content	Туре
30015	Tension de calibrage	T4
30017	Courant de calibrage	T4

Rxxxxx sont numéros de registre Modbus, voir ci-dessus.

Il est suggéré que ces valeurs sont lues régulièrement pour s'assurer que les modifications apportées aux paramètres sont intégrés dans le calcul.

Comme les gammes nominales d'entrée de l'm2x2 sont 500V et 5A, la plage de tension utilisés et Plage de courant doivent être réglés correctement pour obtenir les valeurs de la plus haute résolution normalisées. Ces valeurs sont définies en utilisant le logiciel QDSP.

Registre	Content	Туре	Ind	Valeur / Dependance	Min	Мах	P. Niveau
40143	mode de connexion	T1	0	No mode	1	5	2
			1	1b - Monophasé			
			2	3b - 3 phase 3 fils déséquilibré			
			3	4b - 3 phase 4 fils déséquilibré			
			4	3u - 3 phase 3 fils déséquilibré			
			5	4u - 3 phase 4 fils déséquilibré			
40144	Secondaire TC	T4		mA			2
40145	Primaire TC	T4		A/10			2

18.4 Table de registre pour les paramètres de base

iSTAT M2x2

Registre	Content	Туре	Ind	Valeur / Dependance	Min	Мах	P. Niveau
40143	Secondaire	T4		mV			2
40147	Primaire	T4		V/10			2
40148	Plage de courant d'entrée	T16		10000 for 100%	5,00	200,00	2
40149	Plage de tension d'entrée	T16		10000 for 100%			2
40150		T1		HZ			2

18.5 Types de données de décodage

Туре	Bit mask	Description
T 4		Valeur Non signé (16 bit)
11		Exemple: 12345 = 3039(16)
то		Valeur Signé (16 bit)
12		Exemple: -12345 = CFC7(16)
то		Long Valeur Signé (32 bit)
13		Exemple: 123456789 = 075B CD 15(16)
		Court Flotteur Non Signé (16 bit)
τı	bits # 15…14	Exposant Décennie (Non signé 2 bit)
14	bits # 13…00	Valeur Binaire Non Signé (14 bit)
		Exemple: 10000*102 = A710(16)
		Mesure Non Signé (32 bit)
Τ5	bits # 31…24	Exposant Décennie (Signé 8 bit)
15	bits # 23…00	Valeur Binaire Non Signé (24 bit)
		Exemple: 123456*10-3 = FD01 E240(16)
		Mesure Signé (32 bit)
те	bits # 31…24	Exposant Décennie (Signé 8 bit)
10	bits # 23…00	Valeur Binaire Signée (24 bit)
		Exemple: - 123456*10-3 = FDFE 1DC0(16)
		Power Factor (32 bit)
	bits # 31…24	Signe: Import/Export (00/FF)
T7	bits # 23…16	Signe: Inductif/Capacitif (00/FF)
	bits # 15…00	Valeur Non Signée (16 bit), 4 décimales
		Exemple: 0.9876 CAP = 00FF 2694(16)

Туре	Bit mask	Description
		Temps (32 bit)
то	bits # 31…24	1/100s 00 - 99 (BCD)
	bits # 23…16	Seconds 00 - 59 (BCD)
19	bits # 15…08	Minutes 00 - 59 (BCD)
	bits # 07…00	Heurs 00 - 24 (BCD)
		Exemple: 15:42:03.75 = 7503 4215(16)
		Date (32 bit)
	bits # 31…24	Jour du mois 01 - 31 (BCD)
T10	bits # 23…16	Mois de l'année 01 - 12 (BCD)
	bits # 15…00	Année (entier non signé) 19984095
		Exemple: 10, SEP 2000 = 1009 07D0(16)
T16		Valeur Non signé (16 bit), 2 décimales
110		Exemple: 123.45 = 3039(16)
T 47		Mesure Signé (32 bit)
117		Exemple: -123.45 = CFC7(16)
T_Str4		Text: 4 caractères (2 caractères for 16 bit registre)
T_Str6		Text: 6 caractères (2 caractères for 16 bit registre)
T_Str8		Text: 8 caractères (2 caractères for 16 bit registre)
T_Str16		Text: 16 caractères (2 caractères for 16 bit registre)
T_Str40		Text: 40 caractères (2 caractères for 16 bit registre)

19. ANNEXE B: CALCULS ET ÉQUATIONS

19.1 Définitions des symboles

No	Symbole	Définition
1	Mv	facteur d'échantillonnage
2	Mр	Intervalle moyen
3	U _f	Tension de phase (U_1 , U_2 or U_3)
4	Uff	Tension entre phase (U ₁₂ , U ₂₃ or U ₃₁)
5	Ν	Nombre total d'échantillons dans une période
6	n	Numéro d'échantillon (0 ≤ n ≤ N)
7	х, у	Numéro de phase (1, 2 or 3)
8	in	Echantillon Courant n
9	Ufn	Échantillon de tension de phase n
10	UfFn	Échantillon de tension entre phase n
11	φ _f	Angle entre la puissance et la phase de tension de courant f $(\phi_1, \phi_2 \text{ or } \phi_3)$

19.2 Equations

Tension

	Tension de phase
$\sum_{n=1}^{N} u_n^2$	N – 128 échantillons dans une période (jusqu'à 65 Hz)
$U_f = \sqrt{\frac{n=1}{N}}$	N − 128 échantillons dans les périodes M _v (au-dessus 65Hz)
	Exemple: 400 Hz \rightarrow N = 7
$\left(\sum_{i=1}^{N} (u_{i} - u_{i})^{2}\right)$	Tension entre phase Phase
$U_{xy} = \sqrt{\frac{\sum_{n=1}^{\infty} (u_{xn} - u_{yn})}{N}}$	u _x , u _y – tensions de phase (U _f)
	N – le nombre d'échantillons dans une période

Courant

Courant de phase

N – 128 échantillons dans une période (jusqu'à 65 Hz)

N – 128 plus échantillons dans des périodes (au-dessus 65 Hz)
$$I_{n} = \sqrt{\frac{\sum_{n=1}^{N} (i_{1n} + i_{2n} + i_{3n})^{2}}{N}}$$

Puissance

$P_{\rm f} = \frac{1}{N} \cdot \sum_{\rm n=1}^{\rm N} \left(u_{\rm fn} \cdot i_{\rm fn} \right)$	Puissance active par phases N – le nombre de périodes n – le nombre d'échantillons dans une période f – phase de désignation
$P_t = P_1 + P_2 + P_3$	Puissance active totale t – puissance totale 1, 2, 3 – phase de désignation
$SignQ_{f}(\phi)$ $\phi \in [0^{\circ} - 180^{\circ}] \Rightarrow SignQ_{f}(\phi) = +1$ $\phi \in [180^{\circ} - 360^{\circ}] \Rightarrow SignQ_{f}(\phi) = -1$	Signe de la puissance réactive Q _f – puissance réactive (par phases) φ – angle de puissance
$S_f = U_f \cdot I_f$	Puissance apparente par phase U _f – tension de phase I _f – courant de phase
$S_{t} = S_{1} + S_{2} + S_{3}$	Totale de puissance apparente S ₁₂₃ – puissance apparente par les phases
$Q_{f} = \text{Sign}Q_{f}(\phi) \cdot \sqrt{S_{f}^{2} - P_{f}^{2}}$	Puissance réactive par phases S _f – puissance apparente par les phases P _f – puissance active par phases
$\mathbf{Q}_{\mathrm{t}} = \mathbf{Q}_1 + \mathbf{Q}_2 + \mathbf{Q}_3$	Total puissance réactive Q _f – la puissance réactive par les phases
$\varphi_{s} = a \tan 2(P_{t}, Q_{t})$ $\varphi_{s} = [-180^{\circ}, 179, 99^{\circ}]$	Angle de puissance total P _t – puissance active total S _t – puissance apparente totale
$PF_{t} = \frac{P_{t}}{S_{t}}$	3 facteurs de puissance de phase Pt – puissance active totale St – puissance apparente totale

Courant de neutre

3)

65 Hz)

i - n échantillon de courant de phase (1, 2 or

N = 128 échantillons dans une période (jusqu'à

Page 68/74

_

$PF_{f} = \frac{P_{f}}{S_{f}}$	Facteur de puissance par phases
	P _f – puissance phase active
	S _f – puissance apparente de phase

THG

$I_{\rm f}$ THD(%) = $\frac{\sqrt{\sum_{n=2}^{63} {\rm In}^2}}{I_1} \cdot 100$	Courant THG I ₁ – valeur de premier harmonique
	n - nombre d'harmoniques
U_{f} THD(%) = $\frac{\sqrt{\sum_{n=2}^{63} U_{f} n^{2}}}{U_{f1}} \cdot 100$	Tension de phase THG U ₁ – valeur de premier harmonique n – nombre d'harmoniques
$U_{\rm ff}$ THD(%) = $\frac{\sqrt{\sum_{n=2}^{63} U_{\rm ff} n^2}}{U_{\rm ff1}} \cdot 100$	Tension entre phase THG U ₁ – value of first harmonic n – nombre d'harmoniques

Imagination at work

Grid Solutions St Leonards Building Redhill Business Park Stafford, ST16 1WT, UK +44 (0) 1785 250 070 www.gegridsolutions.com/contact

© 2020 General Electric Company Corporation. All rights reserved. Information contained in this document is indicative only. No representation or warranty is given or should be relied on that it is complete or correct or will apply to any particular project. This will depend on the technical and commercial circumstances. It is provided without liability and is subject to change without notice. Reproduction, use or disclosure to third parties, without express written authority, is strictly prohibited.