F35-145 kV DUAL GAS

Gas-Insulated Substation 145 kV, 40 kA, 3150 A, 50/60 Hz Compatible with SF₆ or g³ gas

Grid Solutions at GE Vernova has more than 50 years of experience in the design, material selection, development, engineering, manufacturing, and servicing of gas-insulated substations (GIS).

Our F35-145 Dual Gas GIS bay – compatible with either SF_6 or g^3 gas – meets the challenges of electrical networks up to 145 kV for following applications: offshore and onshore wind power generation, distribution, infrastructure, and industrial applications

Reduced carbon footprint

The F35g-145 kV is available in a fully SF_6 -free version using our g^3 technology, one of the company's alternative technologies to SF_6 , allowing for a 99% CO2-eq reduction of the gas contribution to global warming. While it has the same dimensions, performance and ratings as SF_6 GIS, the F35g-145 advanced sealing system and improved tightness provide a significantly lower carbon footprint compared to its SF_6 equivalent.

The integration of low-power instrument transformers (LPITs), also known as digital voltage and current transformers, further contributes to decarbonization of the F35 Dual Gas GIS and reduces the need for strategic raw material consumption.

Modular and Versatile

- Applicable in offshore and industrial substations as well as space constrained zones such as urban areas
- High modularity enables complex layouts in a compact arrangement

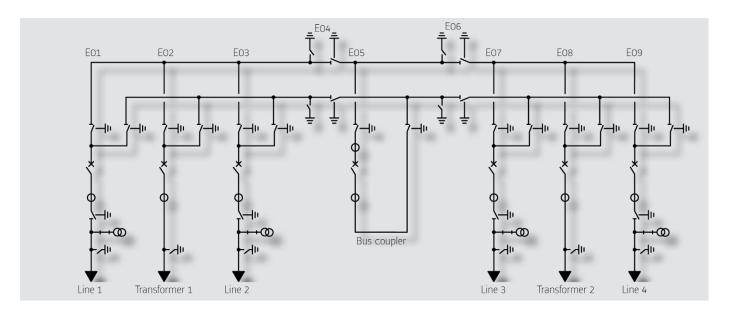
Lowest Cost of Land and Civil Works

- Compact GIS bay with a width of only 800 mm. Dimensions with SF₆ or g³ gas are the same
- Up to 3 bays assembled, wired, tested, and shipped directly to site
- Simple on-site testing due to the disconnecting function of voltage transformers and surge arresters

The path to Decarbonization

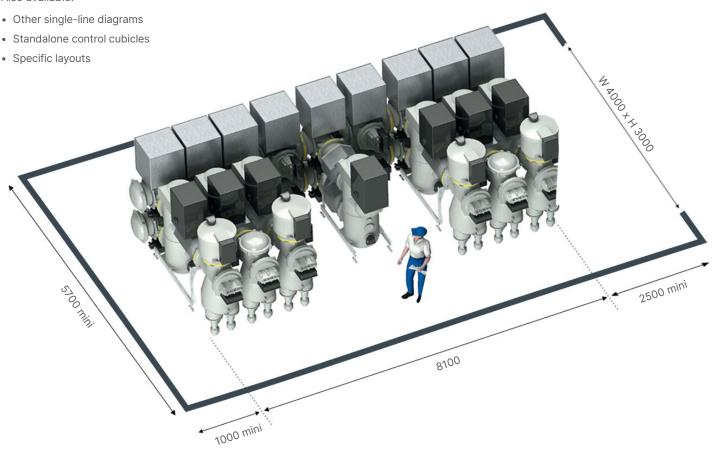
- The F35g-145 kV SF₆-free GIS is part of our GRIDEA portfolio of solutions designed to accelerate the decarbonization of the grid
- Lower carbon footprint over a 40-year substation life cycle compared to the use of SF₆ products
- The gas contribution to global warming is reduced by 99% using our g³ gas as compared to SF₆
- Same GIS footprint with SF₆ or with g³
- Tightness system improved by design with a reduction of the total sealing length by a factor of two in comparison to the previous version

Digital Native GIS


- Mechanically engineered to reach the accuracy required with advanced monitoring and control solutions
- Digital power sensing using lowpower instrument transformers

Easy Upgrades

- Bays are completely factoryassembled, wired and tested before shipment
- Easily make the switch to SF₆-free whenever you're ready
- Compact design that's applicable to all substations, including extensions of existing substations
- State-of-the-art maintenance isolating device for separation of the surge arresters and/or voltage transformers avoiding gas operation or disassembly during on-site testing



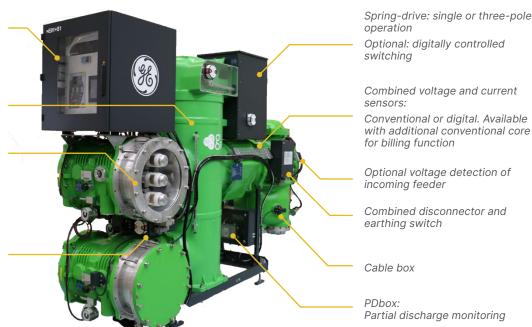
F35 - 145 kV, 40 kA, 3150 A - Double busbar diagram

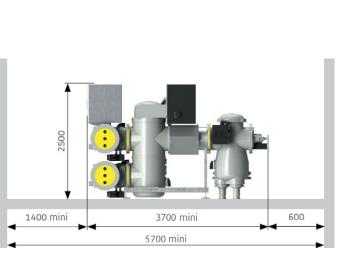
Bay width: 800 mm

Also available:

Available with SF₆ or g³

F35 Universal Bay: same design, no matter what you choose


Local Control Cubicle:


Conventional or Digital, Embedded or Standalone can include a merging unit, voltage detection display, gas management interface, bay control unit including protections

Circuit-breaker

Single or double busbar

Busbar disconnector and earthing switch

1400 mini 3700 mini 600
5700 mini

Digital Bay Conventional bay

Always the same compact design

Digital Native GIS

A new product design approach

Digital native equipment is mechanically engineered to reach the accuracy required with advanced monitoring & control solutions to meet new grid constraints.

Our F35-145 Dual Gas GIS is designed with sustainability in mind, ready to connect and operate fast and effectively to simplify your sourcing and operational experience and finally, get rid of complexity.

Built upon our new dual gas GIS, the digital native F35 natively integrates sensors by default allowing easy plug-in of all our latest generation digital devices. In addition, the low-voltage controlled cubicle is assembled, pre-configured and fully factory-tested with the GIS Bay.

The standardized digital native GIS brings numerous advantages such as:

- · Reduced supply chain complexity
- · Reduced delivery time
- · Connection error prevention
- · Reduced erection and commissioning costs
- Simplified integration into the protection and control scheme through IEC 61850
- · Improved flexibility
- Accurate data based on built-in physical sensors that feed the asset performance management system

Fully in accordance with IEC 61850, the digital native F35 Dual Gas GIS supports the next trend in substation automation and cyber-security.

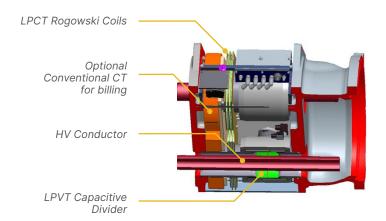
F35 Dual Gas Digital Solutions

BWatch condition monitoring

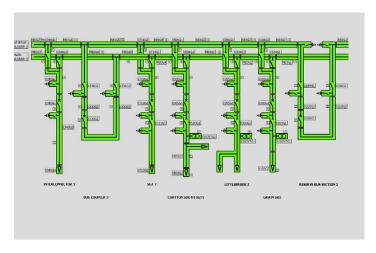
BWatch is our solution for GIS digital condition monitoring. It uses the latest generation of EMC resistant digital gas sensors to continuously measure gas pressure and temperatures to track changes in density. It also helps reduce gas emissions down to 0.1% per year. It provides this information remotely and forecasts refilling needs prior to reaching threshold levels that will impact GIS operation.

Main Functions:

- · Gas density monitoring and anticipation
- · Gas temperature monitoring and alarms management
- · Circuit-breaker and disconnector monitoring
- Internal arc fault location
- · Data analysis for optimized asset management


40,000 compartments are monitored with BWatch.

Low Power Instrument Transformers (LPIT)


Current and Voltage measurement on F35-GIS can be conventional and/or digital. With LPITs, the translation from primary to secondary measurement uses Rogowski or capacitive sensors, demonstrating high level accuracy, and high flexibility. The full digital components chain is available from sensors on the primary equipment to the control room, according to IEC 61869.

First LPITs on our GIS have been in operation since 2005 in compliance with IEC 61850 protocol.

The first F35g GIS (with g^{a} gas) embedding LPIT was energized in 2019.

Combined current and voltage transformer including an optional conventional core for billing function

HMI supervision

Partial Discharge Monitoring - PDWatch

When partial discharges occur, they generate electromagnetic waves that propagate throughout the switchgear. Grid Solutions' PDWatch monitors these waves in the pressurized gas. It can be installed on F35-GIS and it monitors partial discharges via expert analysis of Ultra High Frequency (UHF) signals during commissioning, operation and maintenance.

Accuracy of data is secured thanks to band scanning, external noise discrimination, factory and site calibration of the system. The self-healing optical communication provides high reliability. Data interpretation is made easy for operating teams with a user-friendly HMI and expert tool.

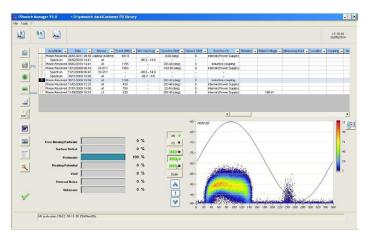
Grid Solutions has vast field experience, with 1,600 GIS bays equipped to date.

Local Control Cubicle

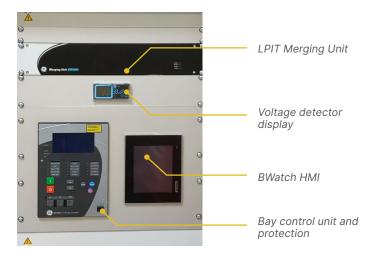
A full set of possibilities are available for F35's local control cubicle:

- Embedded or standalone
- · Conventional or digital or a mix of both technologies

The advantages of digital control cubicle are numerous:

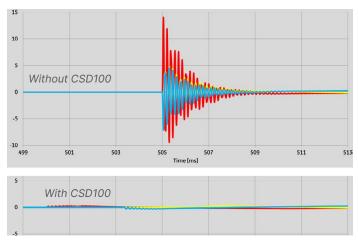

- Reduced cabling
- Compact cubicle
- · Late specification of requirements possible
- Bay Control Unit (BCU) offers flexible configuration capabilities, advanced communication and functionality
- Significant savings in installation costs
- Centralized maintenance

Controlled Switching - CSD100


F35 can be equipped with digital controlled switching combined with a single-pole operated circuit breaker. Optimizing the closing and opening of a circuit breaker is of the utmost importance because random switching can result in high transient overvoltages and/or high inrush currents.

These transients generate stresses on the substation and network equipment, leading to accelerated aging - or the worst case scenario - flashover of the HV apparatus.

APPLICATION	TARGET
Transmission lines	Reduce overvoltages (switching-on) Eliminate current zero missing
Power transformers	Eliminate inrush current (switching-on)
Shunt reactors	Eliminate current re-ignition (switching-off)
Capacitor banks	Eliminate inrush current (switching-on)



Time domain acquisition for pattern recognition with «PDWatch manager»

Digital Local Control Cubicle

3,000 circuit-breakers are controlled with CSD100, GE Vernova's controlled switching solution.

Inrush current limitation for shunt capacitor banks

	CONVENTIONAL SF ₆ BAY	CONVENTIONAL g ³ BAY	FULLY DIGITAL SF ₆ BAY	DIGITAL AND GREEN BAY
Gas				
SF ₆	•		•	
g ³		•		•
Voltage and Current Measurement				
Conventional Voltage and Current Transformers	•	•		
Digital current Transformer (LPIT)			0	0
Digital voltage Transformer (LPIT)			0	0
Combined digital current and voltage transformer (LPIT)			•	•
Billing conventional CT associated with LPIT			0	0
Local control cubicle				
Conventional interlock	•	•		
Digital interlock with Bay Control Unit			•	•
Monitoring and Asset Management				
Conventional density switch	•	•		
BWatch digital condition monitoring			•	•
PDWatch online			•	•
PDWatch portable			0	0
Control				
Three-pole operated circuit-breaker	•	•	•	•
Single-pole operated circuit-breaker	0	0	0	0
RPH controlled switching device	0	0	0	0
Additional functions				
Voltage detection on feeder when used of combined CT / VT	0	0	•	•
Surge arrester	0	0	0	0
Voltage Transformer Disconnecting linksw	0	0	0	0
Bay Dimensions				
Width x Depth x Height (mm)		800 × 3,7	00 × 2,500	

 Standard offering O Optional

Technical Specifications

GENERAL RATINGS				
Insulating and switching gas		g³	SF ₆	
Reference electrotechnical standards		IEC	IEC/IEEE	
Rated voltage		145 kV	145 kV	
Withstand voltages				
Short-duration power-frequency, phase-to-earth / across isolating distance		275 / 315 kV	275 / 315 kV	
- Lightning impulse, phase-to-earth / across isolating distance		650 / 750 kVp	650 / 750 kVp	
Frequency		50 Hz	50 / 60 Hz	
Continuous current		up to 3150 A	up to 3,150 A	
Short-time withstand current		40 kA	40 kA	
Peak withstand current		108 kAp	108 kAp	
Duration of short-circuit		3 s	3 s	
Installation		indoor/outdoor	indoor/outdoor	
First-pole-to-clear factor Short-circuit breaking current Short-circuit making current	1.5 / 1.3 40 kA 108 kAp		1.5 / 1.3 40 kA 100 / 108	
Operating sequence	O - 0.3 s - CO - 3 min - C	00 / CO - 15 s - CO	O - 0.3 s - CO - 3 min - CO / CO - 15 s - CO	
Drive type (three-phase)	pure-spring		pure-spring	
Mechanical endurance	class M2		class M2	
Capacitive switching	class C2		class C2	
DISCONNECTOR AND LOW-SPEED EARTHING SWIT	сн			
Capacitive current switching		0.1 A	0.1 A	
Bus-transfer current switching capability		2520 A / V	2520 A / V	
Mechanical endurance		class M2	class M2	
MAKE-PROOF EARTHING SWITCH				
Making current capability		108 kAp	108 kAp	
Switching capability - electromagnetic coupling		80 A / 2 kV	80 A / 2 kV	
Switching capability - electrostatic coupling		2 A / 6 kV	2 A / 6 kV	
Mechanical endurance		class M1	class M1	

Gas Data*

The functioning of this equipment relies upon SF_6 or a gas mixture based on CO_2/O_2 and 5% of an additive, C_4F_7N (also known as C_4 -FN or Iso- C_3F_7CN), a fluorinated greenhouse gas, which helps preserve dimensions and performance equivalent to those of SF_6 equipment while reducing the gas carbon footprint.

	SF ₆	g	3
		C ₄ F ₇ N additive**	g³ gas mixture
Average mass of gas/mixture in the equipment (kg)*	63.2	7.53	32.4
GWP ₁₀₀ of gas/mixture (CO ₂ -equivalent)	24,300	2,750	560
CO ₂ -eq of gas/mixture in the equipment (t _{co2-eq}) *	1536	20.7	20.7

^{*} For information purposes only considering a typical GIS arrangement (double busbar cable bay). It varies depending on the equipment considered.

For more information, visit **gevernova.com/grid-solutions**

Proprietary Information - This document contains GE Vernova proprietary information. It is the property of GE Vernova and shall not be used, disclosed to others or reproduced without the express written consent of GE Vernova, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE Vernova technology unless otherwise noted.

 \odot 2024, 2025 GE Vernova and/or its affiliates. All rights reserved. GE and the GE Monogram are trademarks of General Electric Company used under trademark license.

^{**} This component's physical properties are essential to g3.