# **T155 DUAL GAS**

## 420 kV (63 kA, 5,000 A) Gas-Insulated Substation Compatible with SF<sub>6</sub> or g<sup>3</sup> gas

Grid Solutions, a GE Vernova business, has more than five decades of experience in the design, material selection, development, engineering, manufacturing and servicing of gasinsulated substations (GIS).

The design of our B105 Dual Gas GIS is grounded in more than 50 years of field experience in  $SF_6$  and more than eight years in  $g^3$  technology as insulating and switching medium. Our T155 Dual Gas GIS bay – compatible with either  $SF_6$  or  $g^3$  gas – meets the challenges of networks up to 420 kV for onshore and offshore power generation and transmission, as well as energy-intensive industry applications.

#### Future-proofed for flexibility

This dual-gas equipment is available with either  $SF_6$  or  $g^3$  gas. Because of its identical foundational design, transmission system operators can implement the  $SF_6$  version today and easily make the switch to our  $g^3$  solution later to decarbonize their substations.

All bay components, except the circuit breaker, are  $g^3$ -or  $SF_6$ -compatible. They have been type-tested to demonstrate the same performances and ratings with both gases.

#### Reduced carbon footprint

The T155g is available in a fully  $SF_6$ -free version using our  $g^3$  technology, one of the company's alternative technologies to  $SF_6$ , allowing for a 99%  $CO_2$ eq reduction of the gas contribution to global warming. While it has the same dimensions, performance and ratings as  $SF_6$ , the T155g advanced sealing system and improved tightness reveal a significantly lower carbon footprint compared to its  $SF_6$  equivalent.

The integration of low-power instrument transformers (LPITs), also known as digital voltage and current transformers, further contributes to decarbonize the T155 Dual Gas GIS and reduce strategic raw material consumption.

#### Low Cost of Land and Civil Works

- $\bullet\,$  The T155 Dual Gas GIS is very compact and accessible, with a bay footprint equivalent to the previous SF  $_{\!6}$  T155 model
- Complete bays including digital devices, and the low voltage control cabinet are assembled, wired, factory-tested and shipped
- The standardized digital native T155 GIS allows for an easier and faster supply chain process, shorten delivery, erection and commissioning times.





The  $SF_6$ -free T155g GIS interrupter development was co-funded by the European Union.

#### The path to Decarbonization

- The T155g SF<sub>6</sub>-free GIS is part of our GRiDEA portfolio of solutions designed to accelerate the decarbonization of the grid
- Lower carbon footprint over a 40-year substation life cycle compared to the use of SF<sub>6</sub> products
- Improved tightness due to sealing length divided by two, compared to the previous version
- The gas contribution to global warming is reduced by 99% using g<sup>3</sup> gas instead of SF<sub>6</sub>
- Reduction of strategic raw material consumption, thus their carbon footprint, thanks to low power instrument transformers

#### Digital Native GIS

- Mechanically engineered to reach the accuracy required with advanced monitoring and control solutions
- Digital power sensing using lowpower instrument transformers

#### Easy Upgrades

- Bays are completely factoryassembled, wired and tested before shipment
- Easily make the switch to SF<sub>6</sub>-free whenever you're ready
- Compact design that's common to all substation applications, including extension of existing substations
- State-of-the-art maintenance isolating device

### Specifications (\*)

| GIS TYPE                                                                     | g³<br>T155g 420 kV               | COMBINED g <sup>3</sup> BAY-SF <sub>6</sub><br>CB T155 420 kV | SF₅<br>T155 420 kV               |
|------------------------------------------------------------------------------|----------------------------------|---------------------------------------------------------------|----------------------------------|
| Reference electrotechnical standards                                         | IEC                              | IEC/IEEE                                                      | IEC/IEEE                         |
| Rated voltage                                                                | 362-420 kV                       | 362-420 kV                                                    | 362-420 kV                       |
| Withstand voltages                                                           | Rated insulation level           |                                                               |                                  |
| Short-duration power-frequency, phase-to-earth/ across open switching device | 650/815 kV                       | 650/815 kV                                                    | 650/815 kV                       |
| Switching impulse, phase-to-earth / across isolating distance                | 1050/900(+345) kVp               | 1050/900(+345) kVp                                            | 1050/900(+345) kVp               |
| Lightning impulse, phase-to-earth / across open switching device             | 1425/1425(+240) kVp              | 1425/1425(+240) kVp                                           | 1425/1425(+240) kVp              |
| Frequency                                                                    | 50 Hz                            | 50/60 Hz                                                      | 50/60 Hz                         |
| Continuous current                                                           | up to 5000 A                     | up to 5000 A                                                  | up to 5000 A                     |
| Short-time withstand current                                                 | 63 kA                            | 63 kA                                                         | 63 kA                            |
| Peak withstand current                                                       | 170 kAp                          | 170 kAp                                                       | 170 kAp                          |
| Duration of short-circuit                                                    | 3s                               | 3s                                                            | 3s                               |
| Installation                                                                 | indoor/outdoor                   | indoor/outdoor                                                | indoor/outdoor                   |
| Circuit Breaker Ratings                                                      |                                  |                                                               |                                  |
| First-pole-to-clear factor                                                   | 1.3-1.5                          | 1.3-1.5                                                       | 1.3 - 1.5                        |
| Short-circuit breaking current                                               | 63 kA                            | 63 kA                                                         | 63 kA                            |
| Short-circuit making current                                                 | 170 kAp                          | 170 kAp                                                       | 170 kAp                          |
| Operating sequence                                                           | O-0.3s-CO-3 min-CO/<br>CO-15s-CO | O-0.3s-CO-3 min-CO/<br>CO-15s-CO                              | O-0.3s-CO-3 min-CO/<br>CO-15s-CO |
| Drive type                                                                   | Pure-spring                      | Pure-spring                                                   | Pure-spring                      |
| Mechanical endurance                                                         | M2 class                         | M2 class                                                      | M2 class                         |
| Capacitive switching                                                         | C2 class                         | C2 class                                                      | C2 class                         |
| Disconnector and Low-speed Earthing Switch Ratings                           |                                  |                                                               |                                  |
| Capacitive current switching                                                 | 0.5 A                            | 0.5 A                                                         | 0.5 A                            |
| Bus-transfer current switching capability                                    | 3000 A / 25 V                    | 3000 A / 25 V                                                 | 3000 A / 25 V                    |
| Mechanical endurance                                                         | M2 class                         | M2 class                                                      | M2 class                         |
| Make-proof Earthing Switch Ratings                                           |                                  |                                                               |                                  |
| Making current capability                                                    | 170 kAp                          | 170 kAp                                                       | 170 kAp                          |
| Switching capability-electromagnetic coupling                                | 160 A / 10 kV                    | 160 A / 10 kV                                                 | 160 A / 10 kV                    |
| Switching capability-electrostatic coupling                                  | 18 A / 20 kV                     | 18 A / 20 kV                                                  | 18 A / 20 kV                     |
| Mechanical endurance                                                         | M1 class                         | M1 class                                                      | M1 class                         |

<sup>(\*)</sup> typical ratings, other values on request

#### Gas Data\*

The functioning of this equipment relies upon  $SF_6$  or a gas mixture based on  $CO_2/O_2$  and 5% of an additive,  $C_4F_7N$  (also known as  $C_4$ -FN or Iso- $C_3F_7CN$ ), a fluorinated greenhouse gas, which helps preserve dimensions and performance equivalent to those of  $SF_6$  equipment while reducing the gas carbon footprint.

|                                                                                    | SF <sub>e</sub> version | g³                                         |                |
|------------------------------------------------------------------------------------|-------------------------|--------------------------------------------|----------------|
|                                                                                    |                         | C <sub>4</sub> F <sub>7</sub> N additive** | g³ gas mixture |
| Average mass of gas/mixture in the equipment (kg)*                                 | 233.7                   | 30.5                                       | 149.8          |
| GWP <sub>100</sub> of gas/mixture (CO <sub>2</sub> -equivalent)                    | 24,300                  | 2,750                                      | 560            |
| $\text{CO}_2$ -eq of gas/mixture in the equipment ( $\text{t}_{\text{co2-eq}}$ ) * | 5,678.9                 | 83.9                                       | 83.9           |

<sup>\*</sup>For information purposes only considering a typical GIS arrangement (double busbar cable bay). It varies depending on the equipment considered.

### For more information visit gevernova.com/grid-solutions

This document contains GE Vernova proprietary information. It is the property of GE Vernova and shall not be used, disclosed to others or reproduced without the express written consent of GE Vernova, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE Vernova technology unless otherwise noted.

© 2025 GE Vernova and/or its affiliates. All rights reserved. GE and the GE Monogram are trademarks of General Electric Company used under trademark license.



<sup>\*\*</sup> This component's physical properties are essential to g<sup>3</sup>.