Grid Solutions

Field Ground Protection Module

The Multilin GPM-F field ground protection module works in combination with the Multilin G60 Generator Protection System to detect ground faults in the field winding of the generator. Providing application flexibility, the field ground protection module can be configured for either single point injection or double point injection based on application requirements. The solution includes two stage field ground detection, injected voltage and current supervision, brush lift-off detection, field over and under current elements and field ground fault location.

Key Benefits

- Providing advanced field ground fault protection for generator applications
- Allowing both single point and double point injection methods provides optimal application flexibility depending on system configuration
- Reduce generator down-time by locating the fault within the field winding when connected in single point injection method
- Designed to operate with GE Vernova's Multilin industry leading G60 Generator Protection System
- Continuously monitors and protects the generator during stopped, starting and running conditions for increased asset life
- Reduce system configuration time by configuring the Field Ground Protection Module through the G60 Generator Protection System and the easy-to-use EnerVista Setup Software
- Increase generator lifespan by easily upgrading your current G60 generator protection relay with the Field Ground Protection Module
- Simplified setup and configuration using EnerVista setup software

Applications

- Medium to large generator applications
- Deployable with redundant generator protection systems
- Suitable for use with generator field voltages up to 800VDC

- Two stage field ground resistance based element - 64F
- Wide range fault resistance coverage (1- 500Kohms)
- Injection frequency range 0.1 3Hz based on field winding capacitance
- Fault location feature while using single point injection
- · Brush-lift off detection
- Injection blocking input for field flashing condition
- Supports redundant G60 configurations
- Field over current and field under current elements using dcmA input of G60

Diagnostics

- Power swing blocking and out-ofstep tripping
- Backup distance
- · Reverse / low forward power
- · Restricted ground fault
- Overexcitation
- Generator unbalance

Protection & Control

The G60 Generator Protection System provides comprehensive protection for medium and large generators, including large steam and combustion turbines, combined-cycle generators and multi-circuit hydro units. The G60 includes advanced automation and communication capabilities, extensive I/O options, and powerful fault recording features that can simplify postmortem disturbance analysis and help minimize generator downtime. As part of the UR Family, the G60 provides superior protection and control that includes:

Field Ground Protection:

Field ground protection identifies occurrence of ground fault in a generator field winding and helps to prevent serious damage to the generator, maximizing operational lifespan. The field ground protection module, GPM-F works in combination with the Multilin G60 to detect ground faults in the field winding of the generator. Providing application flexibility, the field ground protection module can be configured for either single point injection or double point injection based on application requirements. The

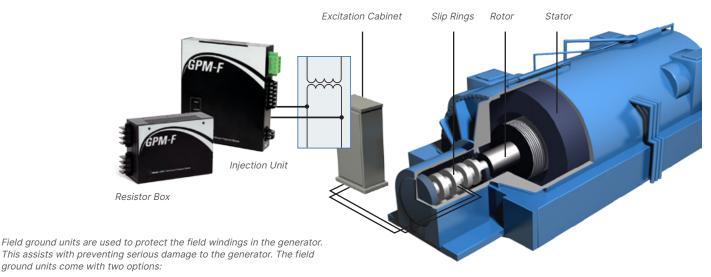
solution includes: two stage field ground detection, injected voltage and current supervision, brush lift-off detection, field over and under current elements and field ground fault location.

If the rated field voltage of the generator is less than or equal to 600 Vdc, then a single box solution is provided. However if the rated field voltage of the generator is between 600-800Vdc, then an external resistor box is provided to facilitate safer installation and operational practices.

Single point Injection

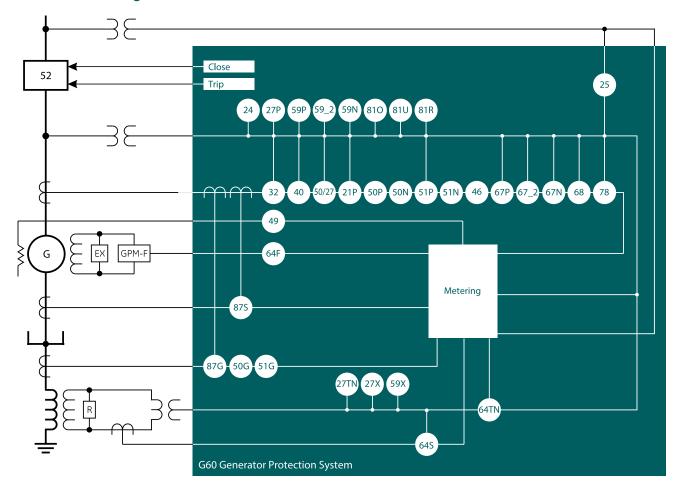
Providing application flexibility and diagnostic information, single point injection provides the ability to quickly identify the fault location in the field winding, thus reducing damaging the generator and reducing down-time. Single point injection can't be used on generators with brushless excitation unless both poles of the field winding is directly connected to a brush.

G60 Generator Protection Integration



- The G60, GPM-S, and GPM-F modules provide complete generator protection
- GPM-S & GPM-F Protection units are connected directly to the G60 relay
- All configuration and monitoring is performed through the G60

Double point Injection

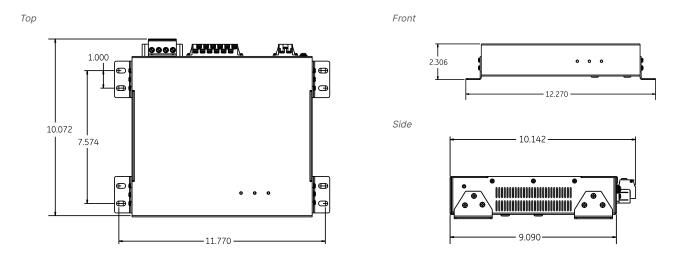

In addition to single point injection, the GPM-F module allows for ground fault detection via double point injection. Double point injection has typically been used on applications where generators are equipped with static excitation. When the GPM-F is connected for double point injection the fault location feature is not available. It is recommended that is fault location is required that the GPM-F be configured for single point injection.

Field Ground Fault Detection

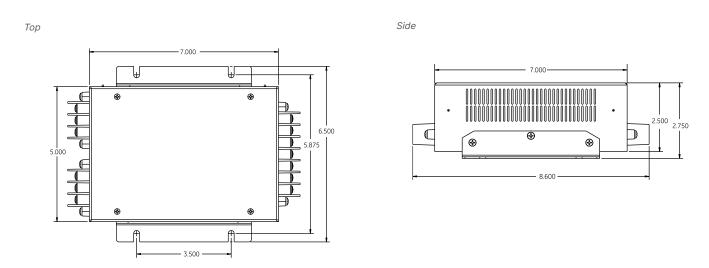
- Single box solution for field voltages up to 600 VDC
- An additional resistor box for field voltages between 600-800 VDC

Functional Block Diagram

ANSI® Device Numbers & Functions


DEVICE NUMBER	FUNCTION		
21P	Phase Distance Backup		
24	Volts Per Hertz		
25	Synchronism Check		
27P	Phase Undervoltage		
27TN	Third Harmonic Neutral Undervoltage		
27X	Auxiliary Undervoltage		
32	Sensitive Directional Power		
40	Loss of Field Relay		
46	Generator Unbalance		
49	Thermal Overload RTD		
50G	Ground Instantaneous Overcurrent		
50N	Neutral Instantaneous Overcurrent		
50P	Phase Instantaneous Overcurrent		
50SP	Split Phase Instantaneous Overcurrent		
50/27	Accidental Energization		
51G	Ground Time Overcurrent		
51P	Phase Time Overcurrent		

DEVICE NUMBER	FUNCTION		
59N	Neutral Overvoltage		
59P	Phase Overvoltage		
59X	Auxiliary Overvoltage		
59_2	Negative Sequence Overvoltage		
64F	Field ground protection		
64S	Sub-harmonic stator ground protection		
64TN	100% stator ground		
67_2	Negative Sequence Directional Overcurrent		
67N	Neutral Directional Overcurrent		
67P	Phase Directional Overcurrent		
68	Power Swing Blocking		
78	Out-of-Step Protection		
810	Overfrequency		
81R	Rate of Change of Frequency		
81U	Underfrequency		
87G	Restricted ground fault		
87S	Generator Stator Differential		


3

Dimensional Data

Field Ground Module (Up to 600 VDC Field Voltages)

High Voltage Resister Box Module (Field Voltages 600 VDC - 800 VDC)

Protection Specifications

FIELD GROUND

Measured Field Ground Resistance Range:

1 k Ω -20 M Ω

Ground Resistance Accuracy:

+/- 5% of reading +/- 250 Ω over the range 1 $k\Omega{-}500~k\Omega$

Field winding Capacitance:

1-10

Maximum Field Voltage:

600Vdc rated field voltage / 1000V ripple peak for single

box option

800 Vdc rated field voltage / 2000V ripple peak for external resistor box option

Field voltage measurement range:

15-800 Volts

Field voltage

measurement accuracy - low

+/- 1V or +/- 3% of reading

Field voltage

measurement accuracy - high

+/- 1V or +/-5% of reading

Field ground RMS current accuracy:

+/- 5% of reading

Fault location accuracy:

+/- 5% of reading

Field ground resistance elements typical

1.1s + (1/Injection frequency)

operating time: Field ground element

102-103% of pickup

dropout level accuracy:
Time delay accuracy:

+/- 3% of time delay setting or +/- 4ms whichever is greater

FIELD CURRENT

Field current measurement (dcmA)

accuracy:
Field over and under

current elements operating time:

Field current element dropout level accuracy:

Time delay accuracy:

+/- 0.2% of full scale

1 power system cycle

102-103% of pickup for UC and 97-98% for OC

+/- 3% of time delay setting or +/- 4ms whichever is greater

TESTS

Dielectric voltage withstand EN60255-5
Impulse voltage withstand EN60255-5
Insulation resistance EN60255-5

 Damped oscillatory
 IEC 61000-4-18 / IEC 60255-22-1

 Electrostatic discharge
 EN61000-4-2 / IEC 60255-22-2

 RF immunity
 EN61000-4-3 / IEC 60255-22-3

 Fast transient disturbance
 EN61000-4-4 / IEC 60255-22-4

 Surge immunity
 EN61000-4-5 / IEC 60255-22-5

 Conducted RF immunity
 EN61000-4-6 / IEC 60255-22-6

Voltage interruption IEC 60255-11

and ripple DC

CISPR11/CISPR22/ Radiated and conducted emissions IEC 60255-25 IEC 60255-21-1 Sinusoidal vibration IEC 60255-21-2 Shock and bump IEC 60255-21-3 Seismic Power magnetic immunity IEC 61000-4-8 IEC 61000-4-9 Pulse magnetic immunity Damped magnetic immunity IEC 61000-4-10 Voltage dip and interruption IEC 61000-4-11 IEC 61000-4-17 Voltage ripple Ingress protection IEC 60529 Environment (Cold) IEC 60068-2-1 IEC 60068-2-2 Environment (Hot) Humidity IEC 60068-2-30 SWC oscillatory IEEE/ANSI C37.90.1 IEEE/ANSI C37.90.1 SWC transients

 ESD
 IEEE/ANSIC37.90.3

 Safety
 UL508

 Safety
 ULC22.2-14

APPROVALS

ISO

RF immunity

CE compliance EN60255-5

EN60255-27 EN60255-26 EN50263

IEEE/ANSI C37.90.2

North America UL508 UL1053

UL1053 C22.2 No. 14 ISO9001

ENVIRONMENTALS

Temperature: Storage: -40C to +85C Operating: -40C to +70C

Humidity: Up to 95% (non condensing) @ 55C (as per IEC60068-2-30

Variant 1, 6 days)

Altitude: 2000m (maximum)

Pollution Degree: II
Overvoltage Category: II
Ingress Protection: IP10

Ordering

GPM-F	-	*	-	Description
Generator Field Voltage		L H		Field Low Voltage (up to 600VDC field voltage) Field High Voltage (up to 800VDC field voltage)

For more information, visit **gevernova.com/grid-solutions**

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company.

GE Vernova reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

© 2025 GE Vernova and/or its affiliates. All rights reserved. GE and the GE Monogram are trademarks of General Electric Company used under trademark license.

