

Gas-Insulated Substations 245 kV, up to 63 kA, 4000 A Compatible with SF₆ or g³ gas

Grid Solutions, a GE Vernova company, has more than five decades of experience in the design, material selection, development, engineering, manufacturing, and servicing of gas-insulated substations (GIS).

The design of our B105 Dual Gas GIS is grounded in more than 50 years of field experience in SF $_6$ and eight years in g³ technology as insulating and switching medium. Our B105 Dual Gas GIS bay – compatible with either SF $_6$ or g³ gas – meets the challenges of networks up to 245 kV for onshore and offshore power generation and transmission, as well as energy-intensive industry applications.

Future-proofed for flexibility

Anticipating future SF_6 regulations, this dual gas equipment is available with either SF_6 or g^3 gas. Because of its identical foundational design, transmission system operators can implement the SF_6 version today and easily make the switch to our g^3 solution later to decarbonize their substations.

All bay components, except the circuit breaker, are g^3 - or SF_6 -compatible. They have been type-tested to demonstrate the same performances and ratings with both gases.

Reduced carbon footprint

The B105g is available in a fully SF_6 -free version using our g^3 technology, one of the company's alternative technologies to SF_6 , allowing for a roughly 99% CO_2 eq reduction of the gas contribution to global warming. While it has the same dimensions, performance and ratings as SF_6 , the B105g advanced sealing system and improved tightness reveal a significantly lower carbon footprint compared to its SF_6 equivalent.

The integration of low-power instrument transformers (LPITs), also known as digital voltage and current transformers, further contributes to decarbonize the B105 Dual Gas GIS and reduce strategic raw material consumption.

Low Cost of Land and Civil Works

- One of the most compact 245 kV GIS
- Complete bays including digital devices and the low voltage control cabinet are assembled, wired, factory-tested and shipped
- The standardized digital native B105 GIS allows for an easier and faster supply chain process, shorten delivery, erection and commissioning times.

The ${\rm SF_6}$ -free B105g development is being co-funded by the European Union

The path to Decarbonization

- The B105g SF₆-free GIS is part of GRiDEA, our portfolio of solutions designed to accelerate the decarbonization of the grid
- Lower carbon footprint during a 40-year substation life cycle
- Improved tightness due to sealing length divided by two, compared to the previous version
- The gas contribution to global warming is reduced by about 99% using g³ gas instead of SF₆
- Reduction of strategic raw material consumption, and thus their carbon footprint, thanks to low power instrument transformers

Digital Native GIS

- Mechanically engineered to reach the accuracy required by advanced monitoring and control solutions
- Digital power sensing using low-power instrument transformers

Easy Upgrades

- Bays are completely factory-assembled, wired and tested before shipment
- Easily make the switch to SF₆-free whenever you're ready
- Similar operational and maintenance procedures as with SF₆ GIS for simple integration
- Compact design that applies to all substation applications, including extension of existing substations
- State-of-the-art maintenance isolating device

SPECIFICATIONS				
General Ratings				
Reference electrotechnical standards	IEC	IEC/IEEE		
Voltages	up to 245 kV	up to 245 kV		
Insulating and switching gas	g ³	SF ₆		
Withstand voltages				
Short-duration power- frequency, phase-to-earth/ across open switching device	460/530 kV	460/530 kV		
Lightning impulse, phase- to-earth / across open switching device	1050/1200 kVp	1050/1200 kVp		
Frequency	50 Hz	50/60 Hz		
Continuous current	4000 A	4000 A		
Short-time withstand current	50 kA	50/63 kA		
Peak withstand current	135 kAp	135/170 kAp		
Duration of short-circuit	3s	3s		
Installation	indoor/outdoor	indoor/outdoor		
Circuit Breaker Ratings				
Short-circuit breaking current	50 kA	50/63 kA		
Short-circuit making current	135 kAp	135/170 kAp		
Operating sequence	O-0.3s-CO-3 min-CO/ CO-15s-CO	O-0.3s-CO-3 min-CO/ CO-15s-CO		
Drive type (three-phase or single-phase)	Pure-spring	Pure-spring		
Breaking time	<50 ms	<50 ms		
Mechanical endurance	M2 class	M2 class		
Disconnector and Low-speed Earthing Switch Ratings				
Capacitive current switching	0.25 A	0.25 A		
Bus-transfer current switching capability	2400 A / 25 V	2400 A / 25 V		
Mechanical endurance	M2 class	M2 class		
Make-proof Earthing Switch Ratings				
Making current capability	135 kAp	135/170 kAp		
Switching capability- electromagnetic coupling	80 A / 2 kV	80 A / 2 kV		
Switching capability- electrostatic coupling	3 A / 12 kV	2 A / 12 kV		
Mechanical endurance	M1 class	M1 class		

The functioning of this equipment relies upon SF_6 or a gas mixture based on CO_2/O_2 and 5% of an additive, C_4F_7N (also known as C4-FN or Iso- C_3F_7CN), a fluorinated greenhouse gas, which helps preserve dimensions and performance equivalent to those of SF_6 equipment while reducing the gas carbon footprint.

	SF ₆	g³	
		C ₄ F ₇ N additive**	g³ gas mixture
Average mass of gas/ mixture in the equipment (kg)*	127.9	12.8	62.9
GWP ₁₀₀ of gas/mixture (CO ₂ -equivalent)	24,300	2,750	560
${\rm CO_2}$ -eq of gas/mixture in the equipment (${\rm t_{co2-eq}}$) *	3,108	35.2	35.2

^{*}For information purposes only considering a typical GIS arrangement (double busbar cable bay). It varies depending on the equipment considered.

For more information visit gevernova.com/grid-solutions

© 2024 GE Vernova and/or its affiliates. Proprietary Information - This document contains GE Vernova proprietary information. It is the property of GE Vernova and shall not be used, disclosed to others or reproduced without the express written consent of GE Vernova, including, but without limitation, in the creation, manufacture, development, or derivation of any repairs, modifications, spare parts, or configuration changes or to obtain government or regulatory approval to do so, if consent is given for reproduction in whole or in part, this notice and the notice set forth on each page of this document shall appear in any such reproduction in whole or in part. The information contained in this document may also be controlled by the US export control laws. Unauthorized export or re-export is prohibited. This presentation and the information herein are provided for information purposes only and are subject to change without notice. NO REPRESENTATION OR WARRANTY IS MADE OR IMPLIED AS TO ITS COMPLETENESS, ACCURACY, OR FITNESS FOR ANY PARTICULAR PURPOSE. All relative statements are with respect to GE Vernova technology unless otherwise noted.

^{**} This component's physical properties are essential to g3.