Grid Solutions

MULTILIN UR & URPLUS

Proven, State-of-the-Art Protection & Control Systems

From the power plant to the power consumer, the Multilin™ UR & URPlus family of advanced protection and control relays provides one integrated platform that delivers leading edge protection, control, monitoring & metering solutions for critical power system applications. Featuring proven protection algorithms, expandable I/O, integrated monitoring & high accuracy metering capabilities with the latest in communications technologies, the Multilin UR & URPlus family of devices provides the situational awareness needed for a reliable, secure and efficient modern grid.

Key Benefits

- Modular construction: common hardware, reduced stock of pare parts, plug & play modules for maintenance cost savings and simplification (Multilin UR)
- Proven flexibility and customization capabilities make the Multilin UR/UR^{Plus} devices suitable to retrofit almost any kind of legacy P&C scheme
- Large HMI and annunciator panels provide local monitoring & control capabilities, and backup the substation HMI
- Phase measurement Unit (synchrophasors) according to IEEE® C37.118 (2011) and IEC® 61850-90-5 directly streamed from your protective device
- Embedded IEEE 1588 Time Synchronization Protocol support eliminates dedicated IRIG-B wiring requirements for P&C devices (Multilin UR)
- Advanced IEC 61850 Ed. 1 and Ed. 2 certified implementation, complete settings via SCL files and comprehensive process bus support (IEC 61850-9-2LE or IEC 61869 or IEC 61850-9-2 Hardfiber) ensures interoperability, device managing optimization and reduced cost of ownership
- Routable GOOSE (R-GOOSE) enables customer to send GOOSE messages beyond the substation, which enables WAPC and more cost effective communication architectures for wide area applications
- Increased network availability via failover time reduced to zero through IEC® 62439-3 "PRP" support
- Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard

Applications

- Protection, control, monitoring and supervision of power assets across generation, transmission, distribution, substation and industrial systems
- · Utility substation and industrial plant automation
- Digital fault recording and Sequence of Event (SOE) recording
- Predictive maintenance through data analysis and trending
- Synchrophasors based monitoring and control system with specialized PMU devices that support multiple feeders providing P&M class synchrophasors of voltage, current, and sequence components
- Complex protection & control and wide area monitoring solutions with complete diagnostic and automation capabilities (Multilin UR^{Plus})

Protection and Control

- Fast, segregated line current differential & distance protection functionality in one device
- Phase distance (5 zones) with independent settings for compensation
- Single-pole tripping, breaker-and-a-half with independent current source support
- Comprehensive generator protection with 100% stator and field ground fault detection
- Protection and control functionality in one box, reducing the number of devices
- Integrated large, full color display, for real-time visualization and control of the protected bay

Advanced Communications

- 3 independent Ethernet ports for simultaneous & dedicated network connections with IEEE 1588 support
- IEC 61850-9-2LE/IEC 61869 networked or IEC61850-9-2 Hardfiber process bus support

Cyber Security

 CyberSentry™ provides high-end cyber security aligned to industry standards and services (NERC® CIP, AAA, Radius, RBAC, Syslog)

Monitoring & Metering

- Advanced recording capabilities, configurable & extended waveform capture and data logger
- Fault locator fault reports & programmable
- Breaker condition monitoring including breaker arcing current (I2t), breaker re-strike and breaker flashover
- Metering: current, voltage, power factor, frequency, voltage & current harmonics, energy, demand, phasors, etc.

UR & URPlus Market Offerings

Generation

G60

Medium to Large Generators

The G60 provides comprehensive primary and backup protection for medium and large generators, including large steam and combustion turbines, combined-cycle generators and multi-circuit hydro units. The G60 includes advanced automation and communication capabilities, extensive I/O options, and powerful fault recording features that simplify postmortem analysis and minimize generator downtime.

G30

Combined Generator & Transformer Protection

The G30 is a flexible system that can be used on small and medium generators, generator and step-up transformer arrangements or backup protection of large generators. Similar to the G60, the G30 also offers comprehensive protection and monitoring elements.

D90^{Plus}

Sub-Cycle Distance Protection

The D90^{Plus} is ideally suited for application on transmission lines where fast fault detection and small breaker failure margin are required. The D90^{Plus} allows transmission limits to be maintained or even increased while respecting the transient stability limits of the power system.

D60

Fully Featured Distance Protection

The D60 is the ideal solution for providing reliable and secure primary and backup protection of transmission lines supporting: series compensation, teleprotection schemes, five mho or quad distance zones, single or three-pole tripping, breaker-and-half with independent current inputs, phasor measurement units (PMUs), and more.

D30

Backup Distance Protection

The D30 is the cost-effective choice for the primary protection of sub-transmission systems or backup protection of transmission systems. Using FlexLogic™ elements, basic pilot schemes can be programmed. The D30 has complementary protection, control, communication, monitoring and metering functions that meet the toughest requirements of the market.

L90

Complete Line Protection

The L90 is a fast and powerful high-end phase-segregated line current differential and complete distance protection system, suitable for MV cables, two or three terminal transmission lines having breaker-and-half and single or three-pole tripping schemes.

L60

Transmission & Distribution

Line Phase Comparison Protection

The L60 is an extremely fast line phase comparison system, suitable for two or three terminal transmission lines. This system is able to operate using power line carrier or fiber optic communications.

L30

Sub-Transmission Line Current Differential Protection

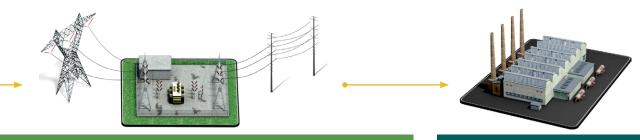
The L30 is a cost-effective phasesegregated line current differential system intended to provide primary protection for MV cables and two/three-terminal sub-transmission lines or backup protection to transmission lines.

B90

Low Impedance Busbar Protection

The B90 is an advanced low-impedance differential protection system that is intended to cover applications ranging from small to large substations, having either single or complex-split busbar schemes. It is able to support busbars with up to 24 breakers, and 4 single phase differential zones.

B30


Low Impedance Busbar Protection

The B30 is a cost-effective, advanced protection system that fits busbars with up to 6 circuits and two protection zones. The B30 provides advanced elements like CT trouble, directional and CT saturation, breaker failure and voltage supervision that make the B30 an extremely fast and secure busbar protection system. B30 also fits conventional centralized or process bus based distributed bus bar protection schemes.

B95^{Plus}

Distributed Busbar Protection System

The B95^{Plus} is GE Vernova's distributed

Transmission & Distribution (Continued)

busbar solution that can be applied to any kind of busbar configuration and uses standard IEC 61850 protocol to connect to the bay units. The B95^{Plus} delivers comprehensive and reliable protection for busbar applications with up to 24 feeders.

F60

Feeder Protection with Hi-Z Fault Detection

The F60 provides comprehensive feeder protection, control, advanced communications, monitoring and metering in an integrated, economical, and compact package and more.

F35

Multiple Feeder Protection

The F35 is a cost-effective device for primary feeder protection. F35's modular design allows customers to protect groups of feeders as follows: independent current and voltage inputs, independent current and common voltage inputs or independent current inputs only.

C70

Capacitor Bank Protection

The C70 is an integrated protection, control, and monitoring device for shunt capacitor banks. The current and voltage-based protection functions are designed to provide sensitive protection for grounded, ungrounded single and parallel capacitor banks and banks with taps.

T60

Medium to Large Transformers

The T60 is a fully featured transformer protection system suitable for power transformers of any size that require current differential function. The T60 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, and performs automatic phase shift compensation for all types of transformer winding connections.

T35

Basic Transformer Protection, Multiple CTs

The T35 is a basic transformer protection system capable of protecting combined main power transformers and up to five feeders downstream. The T35 provides automatic or user-definable magnitude reference winding selection for CT ratio matching, automatic phase shift compensation and allows users to enable removal of the zero-sequence current even for delta connected transformer windings.

C90Plus

Breaker Automation and Controller

The C90Plus is a powerful logic controller designed to be used in substation environments and for the unique automation requirements of industrial and utility power systems. The C90Plus provides unmatched logic processing ability combined with a powerful math engine with deterministic execution of logic equations regardless of the configuration of the number of lines of logic.

C60

Breaker Controller

The C60 is a substation hardened controller that provides a complete integrated package for the protection, control, and monitoring of circuit breakers, supporting dual-breaker busbar configurations, such as breaker-and-half or ring bus schemes.

C30

I/O Logic Controller

The C30 is designed to perform substation control logic that can also expand the I/O capability of protection devices and replace existing Sequence of Events (SOE) recorders.

Industrial & Network

M60

Motor Protection

The M60 offers comprehensive protection and control solutions for large-sized three-phase motors. The M60 provides superior protection, control, and diagnostics that includes thermal model with RTD and current unbalance biasing, stator differential, reverse and low forward power, external RRTD module, two-speed motors, reduced voltage starting, broken rotor bar detection, and more.

N60

Network Stability and Synchrophasor Measurement

The N60 is intended to be used on load shedding, remedial action, special protection and wide area monitoring and control schemes. Like no one device before, the N60 shares real-time operational data to remote N60s so the system can generate intelligent decisions to maintain power system operation.

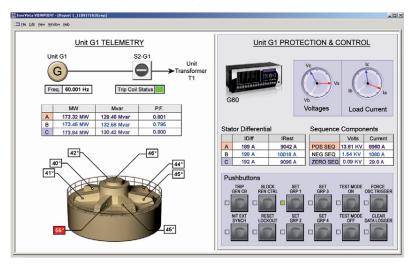
Overview

The Universal Relay (UR) is a family of leading edge protection and control products built on a common modular platform. All UR products feature high-performance protection, expandable I/O options, integrated monitoring and metering, high-speed communications, and extensive programming and configuration capabilities. The UR forms the basis of simplified power management for the protection of critical assets, either as a stand-alone device or within an overall power automation system.

The UR is managed and programmed through EnerVista Launchpad. This powerful software package, which is included with each relay, not only allows the setpoints of the relay to be programmed, but also provides the capability to manage setpoint files, automatically access the latest versions of firmware/documentation and provide a window into the substation automation system.

The UR can be supplied in a variety of configurations and is available as a 19-inch rack horizontal mount unit or a reduced size (3/4) vertical mount unit. The UR consists of the following modules: power supply, CPU, CT/VT input, digital input/output, transducer input/output, inter-relay communications, communication switch and IEC 61850 Process Bus. All hardware modules and software options can be specified at the time of ordering.

Protection and Control


The UR incorporates the most complete and unique protection algorithms to provide unparalleled security and system uptime. The UR selector guide (in the following pages) lists all the protection elements found in each relay.

To support the protection and control functions of the UR, various types and forms of I/O are available (specific capabilities are model dependent). Supported I/Os include:

CTs and VTs

Up to 24 analog current transformer (CT) and voltage transformer (VT) signals can be configured to monitor AC power lines. Both 1 A and 5 A CTs are supported. Special function modules are available including: a CT module with sensitive ground input to provide ground fault protection on high-impedance grounded systems, and a high-impedance fault detection module that provides fast and reliable detection of faults caused by downed conductors.

UR - Protection, Metering, Monitoring and Control

The UR is the single point for protection, control, metering, and monitoring in one integrated device that can easily be connected directly into DCS or SCADA monitoring and control systems like Viewpoint Monitoring as shown.

Digital I/O

Up to 96 contact inputs (with utility voltage rating up to 250V), and up to 64 contact outputs, are available and can be used to monitor and control a wide range of auxiliary equipment found within a substation or other protection application. Types of digital I/O cards include trip-rated Form-A, Form-C, Fast Form-C, latching and Solid State Relay (SSR), with or without DC voltage, current monitoring and isolated inputs (with auto burnish feature). Mechanically latching outputs can be used to develop secure interlocking applications and replace mechanical switches and lockout relays. Form-A digital outputs have activation speeds of less than 4ms and both wet and dry contacts are supported.

Solid state output modules with high current breaking capability, fast tripping and reset time are ideal for direct tripping applications.

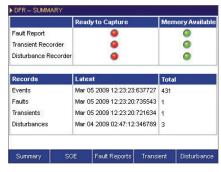
Transducer I/O

RTDs and DCmA cards are available to monitor system parameters, such as temperature, vibration, pressure, wind speed, and flow. Analog outputs can be used for hardwired connections from the controller to a SCADA system, to a programmable logic controller (PLC), or to other user interface devices (eg. panel display).

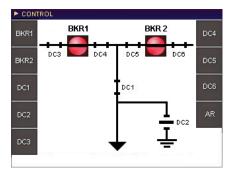
Advanced Automation

The UR incorporates advanced automation features including powerful FlexLogic programmable logic, communication, and

SCADA capabilities that far surpass what is found in the average protection relay. Each UR can be seamlessly integrated with other UR relays for complete system protection and control.


FlexLogic

FlexLogic is the powerful UR-platform programming logic engine that provides the ability to create customized protection and control schemes, minimizing the need and associated costs of, auxiliary components and wiring. With 1024 lines of FlexLogic, the UR can be programmed to provide the required tripping logic along with custom scheme logic for breaker control (including interlocking with external synchronizers), transfer tripping schemes for remote breakers and dynamic setting group changes.


Scalable Hardware

The UR is available with a multitude of I/O configurations to suit the most demanding application needs. The expandable modular design allows for easy configuration and future upgrades.

- Multiple CT/VT configurations allow for the implementation of many different schemes, including concurrent splitphase and differential protection
- Flexible, modular high density I/O covering a broad range of input signals and tripping schemes with trip rated Form-A for high density outputs and Trip rated Form A, SSR, Form-C and mechanically latched relays for normal outputs

Digital fault recorder summary with the latest information on the events, faults, transients and disturbances.

Control screen for the preconfigured bay with breaker & disconnect control in multiple pages using dedicated pushbuttons in the front panel.

- Inter-relay communications module that enables the sharing of digital status and analog values between UR relays for control, fast tripping or teleprotection applications
- Types of digital outputs include triprated Form-A and SSR mechanically latching, and Form-C outputs
- Form-A and SSR outputs available with optional circuit continuity monitoring and current detection to verify continuity and health of the associated circuitry
- IEC 61850 Process Bus delivering advanced protection and control capabilities while providing significant savings on the total life cost of electrical substations
- RTDs and DCmA inputs are available to monitor equipment parameters such as temperature and pressure

Monitoring and Metering

The UR includes high accuracy metering and recording for all AC signals. Voltage, current, and power metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle.

Fault and Disturbance Recording

The advanced disturbance and event recording features within the UR can significantly reduce the time needed for postmortem analysis of power system events and the creation of regulatory reports. Recording functions include:

- Sequence of Event (SOE)
 - 1024 time stamped events (UR Relays)
 - 8192 time stamped events (URPlus)
- Oscillography
 - Supports IEEE C37.111-1999/2013, IEC 60255-24 Ed 2.0 COMTRADE standard

- 64 digital & up to 40 analog channels
- Events with up to 45s length
- Data Logger and Disturbance Recording
 - 16 channels up to 1 sample/cycle/ channel
- Fault Reports
 - Powerful summary report of pre-fault and fault values

The very high sampling rate and large amounts of storage space available for data recording in the UR allows for the capture of complex events and can eliminate the need for installing costly stand-alone recording equipment.

Advanced Device Health Diagnostics

The UR performs comprehensive device health diagnostic tests at startup and continuously during run-time to test its own major functions and critical hardware. These diagnostic tests monitor for conditions that could impact security and availability of protection, and present device status via SCADA communications and front panel display. Providing continuous monitoring and early detection of possible issues help improve system uptime.

- Comprehensive device health diagnostic performed at startup
- Monitors the CT/VT input circuitry to validate the integrity of all signals
- Monitors internal DC voltage levels that allows for proactive maintenance and increased uptime

PMU - Synchrophasors

With the ability of having up to 6 PMU elements in one device, UR devices provide simultaneous data streams of up to four different clients.

UR devices exceed the IEEE C37.118 (2011) requirements for Total Vector Error (TVE) less than 1% over a range of 40Hz to 70Hz, and are able to measure and report

synchrophasors over a frequency range from 30Hz to 90Hz with little effect on TVE.

A special feature of the synchrophasor implementation is the ability to apply magnitude and phase angle correction on a per-phase basis for known CT and PT magnitude and phase errors. Selected UR devices can apply a phase correction on each phase of up to ±5° in increments of 0.05°. They also provide the ability to adjust for delta-wye phase angle shifts or polarity reversal in the synchrophasor reporting of the voltage and current sequence components.

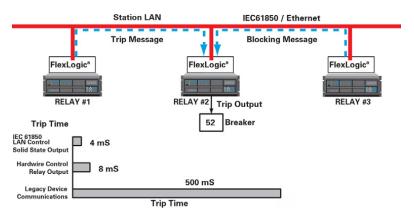
UR devices can stream PMU data through any of its three Ethernet ports using either IEEE C37.118 or IEC 61850-90-5 data formats. When streaming PMU data through a single port, a failover function can automatically switch the transmission over another Ethernet port.

Selected UR devices also support up to 16 user-definable command outputs via the command frame defined in the IEEE C37.118 standard.

PMU recording

UR devices include high accuracy metering and recording for all AC signals. Voltage, current, frequency, power and energy and demand metering are built into the relay as a standard feature. Current and voltage parameters are available as total RMS magnitude, and as fundamental frequency magnitude and angle. UR devices have 12MB of synchrophasor recording memory with multiple recording and triggering options. The PMU recorder can be triggered by an over/under frequency, over/under voltage, overcurrent, overpower, rate of change of frequency condition, or by a userspecified condition, freely configured through FlexLogic. The PMU status flag shows which of those functions triggered the PMU recorder.

Monitor Multiple Power Circuits


Selected UR devices can monitor from one up to six three-phase power circuits and can be configured to simultaneously provide as many as 6 PMUs. Other configurations are: three power circuits with independent currents and voltages, four power circuits with independent currents and two common voltages, five power circuits with independent current and one common voltage. UR devices provide metering of many power system quantities including active, reactive and apparent power on a per-phase, and three-phase basis, true RMS value, phasors and symmetrical components of currents, and voltages, power factor, and frequency. Frequency can be measured independently and simultaneously from up to six different signals including currents if needed. UR devices allow for the creation and processing of virtual sums of currents through its user configuration mechanism of "signal sources", and can also sum analog values through its FlexMath elements.

Communications

The UR provides advanced communications technologies for remote data and engineering access, making it easy and flexible to use and integrate into new and existing infrastructures. Direct support for fiber optic Ethernet provides high-bandwidth communications allowing for low-latency controls and high-speed file transfers of relay fault and event record information. The available redundant Ethernet option provides the means to create fault tolerant communication architectures in an easy, cost-effective manner without the need for intermediary communication hardware.

The UR supports the most popular industry standard protocols enabling easy, direct integration into DCS and SCADA systems.

- IEC 61850 Ed. 1 and Ed. 2 Station Bus, IEC 61850-2-2LE / IEC 61869 networked or IEC 61850-9-2 HardFiber Process Bus, and IEC 61850-90-5 PMU over GOOSE support
- DNP 3.0 (serial & TCP/IP)
- Ethernet Global Data (EGD)
- IEC 60870-5-103 and IEC 60870-5-104
- Modbus RTU, Modbus TCP/IP
- HTTP, TFTP
- IEEE 1588 and redundant SNTP for time synchronization
- PRP as per IEC 62439-3
- Supports Routable GOOSE (R-GOOSE)

IEC 61850 protocol enables high-speed trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.

Purpose Specific LAN

The available three independent Ethernet ports enable users to segregate heavy traffic (eg. synchrophasors) from mission critical services (eg. GOOSE), as a way to eliminate potential latency effects.

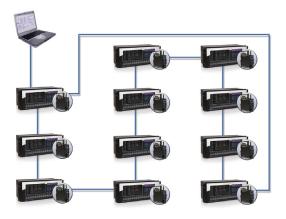
Precision Time Protocol - IEEE 1588

UR devices support the IEEE 1588 v2 (2012) time synchronization protocol that enables time synchronization via the substation LAN with no sacrifice on time accuracy (1µs). IEEE 1588 removes the dedicated IRIG-B wiring and repeaters used for time synchronization that are traditionally used in substations.

UR Switch Module

In addition to providing high-speed connectivity directly to the UR, the UR Switch Module provides an additional 4 fiber Ethernet ports, for connection to other relays in the system as well as upstream connectivity. It also provides 2 RJ45 copper Ethernet ports which can be used to connect local devices such as PCs, meters,

or virtually anything else in the system.

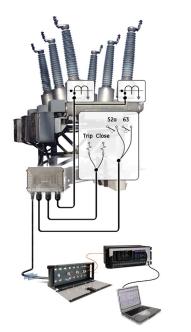

The UR Switch Module provides a simple way to add fully-managed Ethernet networking to your relays and devices without the need for additional hardware or a dedicated communications cabinet.

The UR Switch Module includes all the management and features that come with all MultiLink managed switches, and can be easily integrated into a network that has other Ethernet switches.

When used in a ring topology with other UR switch modules or MultiLink switches, the UR Switch Module can be configured to use MultiLink's Smart RSTP feature to provide industry-leading network recovery for ring topologies, at a speed of less than 5ms per switch.

Interoperability with Embedded IEC 61850 Ed. 1 and Ed. 2

Use the UR with integrated IEC 61850 to lower costs associated with system protection, control and automation. GE Vernova Digital Energy's leadership


The UR Switch Module is a fully-managed Ethernet switch with a modular form factor. It can be placed directly into a GE Vernova Multilin UR to provide Ethernet connectivity to the relay as well as other Ethernet-enabled devices.

in IEC 61850 comes from thousands of installed devices and follows on extensive development experience with UCA 2.0.

- Backup wired signals or replace expensive copper wiring between devices with direct transfer of data from up to 64 remote device using GOOSE messaging.
- Configure GE Vernova systems based on IEC 61850 and also monitor and troubleshoot them in real-time with EnerVista Viewpoint Engineer
- Multicast IEEE C37.118 synchrophasor data between PMU and PDC devices using IEC 61850-90-5
- R-GOOSE enable customer to send GOOSE messages beyond the substation, which enables WAPC and more cost effective communication architectures for wide area applications
- Implements, user selectable, Ed. 1 and Ed. 2 of the standard across the entire UR Family

LAN Redundancy

Substation LAN redundancy has been traditionally accomplished by reconfiguring the active network topology in case of failure. Regardless of the type of LAN architecture (tree, mesh, etc), reconfiguring the active LAN requires time to switchover, during which the LAN is unavailable. UR devices deliver redundancy as specified by PRP-IEC 62439-3,

IEC 61850 protocol enables high-speed trip and control via the substation LAN without complex fixed wiring to many auxiliary devices.

which eliminates the dependency on LAN reconfiguration and the associated switchover time. The UR becomes a dual attached node that transmits data packets over both main and redundant networks simultaneously, so in case of failure, one of the data packets will reach the receiving device with no time delay.

Direct I/O Messaging

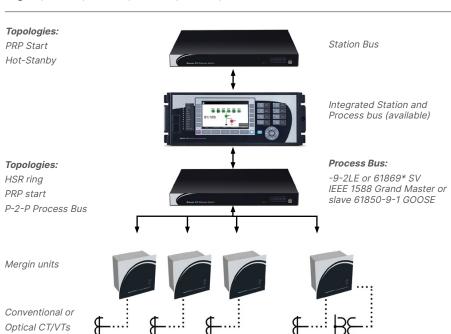
Direct I/O allows for the sharing of analog or high-speed digital information between multiple UR relays via direct back-to-back connections or multiplexed through a standard DSO multiplexer channel bank. Regardless of the connection method, direct I/O provides continuous real-time channel monitoring that supplies diagnostics information on channel health. Direct I/O provides superior relay-to-relay communications that can be used in advanced interlocking, generation rejection and other special protection schemes.

- Communication with up to 16 UR relays in single or redundant rings rather than strictly limited to simplistic point-to-point configurations between two devices
- Connect to standard DS0 channel banks through standard RS422, G.703 or IEEE C37.94 interfaces or via direct fiber optic connections
- No external or handheld tester required to provide channel diagnostic information

Multi-Language

UR devices support multiple languages: English, French, Russian, Chinese, Turkish,

German, Polish and Japanese. These language options are available on the front panel, in the EnerVista setup software, and in the product manuals. Easily switch between English and an additional language on the local displays without uploading new firmware.


IEC 61869 and 61850-9-2LE Process Bus

Three UR process bus modules enable communicating to Merging Units "MU" that comply to either IEC 61869 standard or IEC 61850-9-2LE technical report. MUs connect to the primary asset and translate analog signals and digital status/commands to standard sample values "SV" data and GOOSE messages.

Flexibility for connecting to different network size and topology is granted through 100Mbps and/or 1Gbps Ethernet port support, plus IEC 62439 PRP or HSR standard redundancy, plus Star, Ring and Point-to-point network support.

For time synchronization purposes, this Process bus module can become an IEEE 1588 slave clock (61850-9-3 profile) or a 1588 Grand Master clock which removes the need of external time sources connected to the process bus network.

Customers who may not be using GE Vernova MU devices, could use MU from other vendors. Interoperability with MU from other vendors is expected when they comply to the mentioned standards.

HardFiber IEC 61850 Process Bus

The HardFiber Process Bus System represents a true breakthrough in the installation and ownership of protection and control systems, by reducing the overall labor required for substation design, construction, and testing. This innovative solution addresses the three key issues driving the labor required for protection and control design, construction and testing:

- Every substation is unique, making design and drafting a one-off solution for every station
- Miles of copper wires need to be pulled, spliced and terminated
- Time-consuming testing and troubleshooting of thousands of connections must be performed by skilled personnel

The HardFiber Process Bus System was designed to address these challenges and reduce the overall labor associated with the tasks of designing, documenting, installing and testing protection and control systems. By specifically targeting copper wiring and all of the labor it requires, the HardFiber Process Bus System allows for greater utilization and optimization of resources with the ultimate goal of reducing the total life cost (TLC) for protection and control.

Cyber Security - CyberSentry UR

CyberSentry enables UR devices to deliver full cyber security features that help customers to comply with NERC CIP and NIST® IR 7628 cyber security requirements through supporting the following core features:

Password Complexity

Supporting up to 20 alpha- numeric or special characters, UR passwords exceed NERC CIP requirements for password complexity. Individual passwords per role are available.

AAA Server Support (Radius)

Enables integration with centrally managed authentication and accounting of all user activities and uses modern industry best practices and standards that meet and exceed NERC CIP requirements for authentication and password management.

Role Based Access Control (RBAC)

Efficiently administrate users and roles within UR devices. The new and advanced access functions allow users to configure up to eight roles for up to eight configurable users with independent passwords. The standard "Remote Authentication Dial In User Service" (Radius) is used for authentication.

Event Recorder (Syslog for SEM)

Capture all cyber security related events within a SOE element (login, logout, invalid password attempts, remote/local access, user in session, settings change, FW update, etc), and then serve and classify data by security level using standard Syslog data format. This enables UR devices to integrate with established SEM (Security Event Management) systems.

EnerVista Software

The EnerVista suite is an industry-leading set of software programs that simplifies every aspect of using the UR. The EnerVista suite provides all the tools to monitor the status of the protected asset, maintain the relay, and integrate information measured by the UR into DCS or SCADA monitoring systems. Convenient COMTRADE and SOE viewers are an integral part of the UR setup software included with every UR relay, to carry out postmortem event analysis and ensure proper protection system operation.

EnerVista Launchpad

EnerVista Launchpad is a powerful software package that provides users with all of the setup and support tools needed for configuring and maintaining GE Vernova Multilin products. The setup software within Launchpad allows for the configuration of devices in real-time by communicating using serial, Ethernet , or modem connections, or offline by creating setting files to be sent to devices at a later time.

Included in Launchpad is a document archiving and management system that ensures critical documentation is up-to-date and available when needed. Documents made available include:

- Manuals
- Application Notes and Support Documents
- Guideform Specifications
- Brochures

- · Wiring Diagrams
- FAQ's
- Service Bulletins

Viewpoint Monitoring

Viewpoint Monitoring is a simple-touse and full-featured monitoring and data recording software package for small systems. Similar to small SCADA systems, Viewpoint Monitoring provides a complete HMI package with the following functionality:

- · Plug-&-Play Device Monitoring
- System Single-Line Monitoring & Control
- · Annunciator Alarm Screens
- Trending Reports
- · Automatic Event Retrieval
- · Automatic Waveform Retrieval

Viewpoint UR Engineer

Viewpoint UR Engineer is a set of powerful tools that allows the configuration and testing of GE Vernova relays at a system level in an easy-touse graphical drag-and-drop environment. Viewpoint UR Engineer provides the following configuration and commissioning utilities:

- Graphical Logic Designer (Substation)
- Graphical System Designer
- · Graphical Logic Monitor
- Graphical System Monitor (Substation)
- IEC 61850 Configurator

Viewpoint Maintenance

Viewpoint Maintenance provides tools that will create reports on the operating status of the relay, simplify the steps to download fault and event data, and reduce the work required for cyber security compliance audits. Tools available in Viewpoint Maintenance include:

- Settings Security Audit Report
- · Device Health Report
- Single-Click Fault Data Retreival

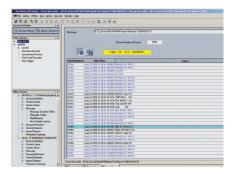
EnerVista Integrator

EnerVista Integrator is a toolkit that allows seamless integration of Multilin devices into new or existing automation systems. Included in EnerVista Integrator is:

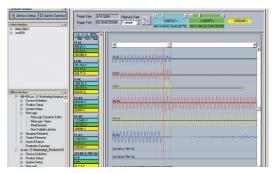
- OPC/DDE Server
- GE Vernova Multilin Drivers
- Automatic Event Retrieval
- Automatic Waveform Retrieval

User Interface

The UR front panel provides extensive local HMI capabilities. The local display is used for monitoring, status messaging, fault diagnosis, and device configuration. User-configurable messages that combine text with live data can be displayed when user-defined conditions are met. Configurable LEDs allows status and alarm signaling (50 LEDs).


The UR^{Plus} and UR optionally has a color graphic HMI that allows users to have customizable bay diagrams with local monitoring of status, values and control functionality.

The alarm annunciator panel provides the configuration of up to 96 (UR) or 256 signals (URPIUS) (alarms and status) with full text description.


A 7" color, graphic HMI is optionally available that allows users to have customizable bay diagrams with local monitoring of status, values and control functionality. The alarm annunciator panel provides the configuration of up to 96 signals (alarms and status) with full text description.

Power System Troubleshooting

The UR contains many tools and reports that simplify and reduce the amount of time required for troubleshooting power system events, increase uptime and reduce loss of production.

Record the operation of the internal UR elements and external connected devices with 1ms time-stamped accuracy to identify the Sequence of Operation of station devices during faults and disturbances.

Analyze faults and disturbances using both analog and digital power system quantities.

UR Enhanced Front Panel with Large Display, Customizable LED Annunicator, and User-Programmable Pushbuttons

LED indicators

- 5 device status LEDs
- 9 event I FDs

Front USB Port

High-speed local data Transfer

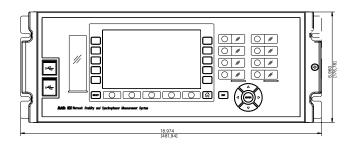

Intuitive HMI

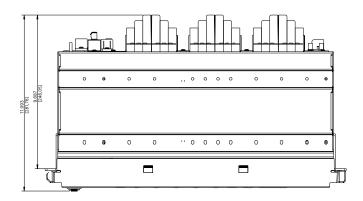
- 7" large color graphic HMI
- 5 customizable bay diagram pages with controls, status and metering values
- 96 customizable alarms in 8 pages
- Event record pages with dynamic updates

8 user programmable pushbuttons

Advanced Communications Capabilities

- Up to three Ethernet ports
- IEC 61850, DNP 3.0, Modbus TCP/IP, IEC 60870-5-104 protocols
- IEEE C37.118 and IEC 61850-90-5 synchrophasors over Ethernet




Advanced Automation Controller

- Built-in programmable logic engine
- Boolean and control operations

10 side screen pushbuttons for bay control and additional 10 soft user programmable pushbuttons 5 below screen tab and 1 home pushbutton for page recall Menu navigation keys

UR Horizontal Dimensions

URPlus Front Panel with Large Color Display and Annunciator Panel

Digital Alarm Annunciator

- 256 customizable alarms in multiple pages
- Eliminates the need for separate annunciator

Intuitive HMI

- Customizable bay diagrams for various applications
- Local control and status indication of breakers & disconnect switches
- Local/remote control (20 programmable buttons)
- Fault, event, disturbance and transient reports

Advanced Control

- Customizable bay diagrams for various applications
- Local control and status indication of breakers & disconnect switches
- · Local/remote control
- Fault, event, disturbance and transient reports

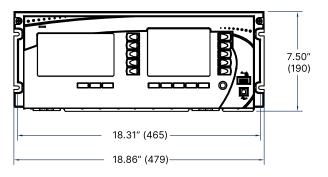
Advanced Automation Controller

- Built-in programmable logic engine
- Advanced math, Boolean and control operations

Advanced Communications Capabilities

- Up to three Ethernet ports
- IEC 61850, DNP 3.0, Modbus TCP/IP, IEC 60870-5-104 protocols
- IEEE C37.118 synchrophasors over Ethernet

Advanced Recorders

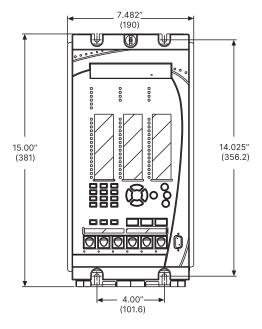

- Eliminate the need for stand-alone disturbance recorders
- 128 samples/cycle, 1 min duration transient recorder
- Seperate dynamic disturbance recorder for recording long term events
- · Synchrophasors PMU recording

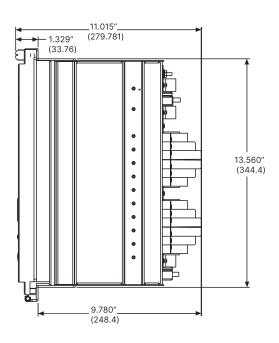
Front USB Port

 High-speed local data transfer

URPlus Dimensions

HORIZONTAL FRONT VIEW




9.80" (249) 11.43" (290)

UR Enhanced Front Panel - Vertical Faceplate

UR Vertical Dimensions

UR Family Selector Guide

FEATURES	ANSI	B30	B90	B95 ^{PLUS}	C30	C60	C70	C90 ^{PLUS}	D30	D60	D90 ^{PLUS}
Protection											
Disturbance Detector									•		•
Mho Distance, Phase (No. of Zones)	21P								5	5	5
Mho Distance, Ground or Neutral Phase	21G/N								5	5	5
(No. of Zones)											
Quadrilateral Distance, Phase (No. of Zones)	21P								5	5	5
Quadrilateral Distance, Ground or Neutral (No. of Zones)	21G/N								5	5	5
Permissive Pilot Logic										•	•
Sub-Cycle Distance											•
Overexcitation Protection (V/Hz)	24										
Synchronism Check or Synchronizing	25					•		•	•	•	•
Undervoltage, Phase	27P	•	•	•		•	•	•	•	•	•
Undervoltage, Auxiliary	27X					•		•	•	•	•
Stator Ground (3rd Harmonic)	27TN										
Sensitive Directional Power	32S					•		•			
Loss of Excitation – Based on Reactive Power	40Q										
Loss of Excitation – Based on Impedance Element	40										
Current Unbalance	46										
Broken Conductor Detection	46BC										
IOC, Negative Sequence	46/50						•	•	•	•	•
TOC, Negative Sequence	46/51						•	•	•	•	•
Current Directional, Negative Sequence	46/67						•	•	•	•	•
Reverse Phase Sequence Voltage	47										
Thermal Model	49										
Inadvertent/Accidental Energization	50/27										
End of Fault Protection		•	•	•							
Motor Mechanical Jam											
Motor Start Supervision											
Motor Acceleration Time											
User Programmable Curves		•				•	•	•	•	•	•
Breaker Failure	50BF	•	•	•		•	•	•	Logic	•	•
IOC, Phase	50P	•	•	•		•	•	•	•	•	•
IOC, Ground	50G	•				•	•	•	•	•	•
IOC, Neutral	50N	•				•	•	•	•	•	•
IOC, Sensitive Ground	50SG	•				•			•	•	
High Impedance Fault Detection											
TOC, Phase	51P	•	•	•		•	•	•	•	•	•
TOC, Ground	51G	•				•	•	•	•	•	•
TOC, Neutral	51N	•				•	•	•	•	•	•
TOC, Sensitive Ground	51SG	•				•			•	•	
TOC, Voltage Restrained	51V	•				•					
Overvoltage, Phase	59P										
Overvoltage, Auxiliary	59A	•				•	•	•	•	•	•
Overvoltage, Neutral	59N	•				•	•	•	•	•	•
Negative Sequence Overvoltage	59-2							•	•		•
100% Stator Ground Protection	64TN										
Current Directional, Phase	67P								•		
Current Directional, Neutral	67N							•	•	•	•
Current Directional, Negative Sequence	46/67							•	•	•	•
Power Swing Blocking	68								•	•	•
Out-of-Step Tripping	78								•	•	•
out or step mpping	, 0								•		

FEATURES	ANSI	B30	В90	B95 ^{PLUS}	C30	C60	C70	C90 ^{PLUS}	D30	D60	D90 ^{PLUS}
AC Reclosing (No. of Shots)	79					4		4	4	4	•
Switch on to Fault (Line Pickup)	SOTF								•	•	•
Voltage Transformer Fuse Failure	VTFF					•	•	•	•	•	•
Current Transformer Supervision	50/74	•	•	•							
Load Encroachment Logic									•	•	•
Underfrequency	81U							•		•	•
Overfrequency	810							•		•	•
Anti-Islanding Protection/Frequency Rate of Change	81R							•		•	
Lockout Functionality	86	•	•	•	•	•	•	•	•	•	•
Bus Differential	87B	2	2	2							
Line Current Differential	87L										
Ground Differential	87G										
Stator Differential	87S										
Transformer Differential	87T										
Line Phase Comparison	87PC										
Voltage Differential							•				
Capacitor Bank Overvoltage							•				
Neutral Voltage Unbalance							•				
Automatic Voltage Regulation							•				
Time of Day Control							•				
Instantaneous Differential	50/87	•	•	•							
Split Phase Protection											
Line Current Differential Trip Logic											
CT Failure		•	•								

FEATURES	F35	F60	G30	G60	L30	L60	L90	M60	N60	T35	T60
Protection											
			T								
Disturbance Detector		•		_	•				•		_
Mho Distance, Phase (No. of Zones)				3		3	5				5
Mho Distance, Ground or Neutral Phase (No. of Zones)						3	3				5
Quadrilateral Distance, Phase (No. of Zones)						3	3				5
Quadrilateral Distance, Ground or Neutral						3	3				5
(No. of Zones)											
Permissive Pilot Logic							•				
Sub-Cycle Distance											
Overexcitation Protection (V/Hz)			•	•							•
Synchronism Check or Synchronizing		•	•	•	•	•	•		•		•
Undervoltage, Phase	•	•	•	•	•	•	•	•	•		•
Undervoltage, Auxiliary	•	•	•	•	•	•	•	•			•
Stator Ground (3rd Harmonic)			•	•							
Sensitive Directional Power		•	•	•				•	•		
Loss of Excitation – Based on Reactive Power			•	•				•			
Loss of Excitation – Based on Impedance Element			•	•							
Current Unbalance			•	•				•			
Broken Conductor Detection											
IOC, Negative Sequence		•			•	•					
TOC, Negative Sequence		•									
Current Directional, Negative Sequence		•	•	•							
Reverse Phase Sequence Voltage											
Thermal Model				•							
Inadvertent/Accidental Energization											
End of Fault Protection											
Motor Mechanical Jam											
Motor Start Supervision											
Motor Acceleration Time											
User Programmable Curves	•	•	•	•	•				•		•
Breaker Failure	Logic	•	Logic	•	•				Logic	Logic	Logic
IOC, Phase	•	•	•	•	•	•	•	•	•		
IOC, Ground	•	•	•	•							
IOC, Neutral	•	•	•	•	•						
IOC, Sensitive Ground	•	•	•								
High Impedance Fault Detection											
TOC, Phase	•	•									
TOC, Ground	•	•	•	•	•	•				•	•
TOC, Neutral	•	•	•	•							
TOC, Sensitive Ground	•	•	•		•	•	•	•		•	•
TOC, Voltage Restrained	•										
Overvoltage, Phase		•	•	•	•	•	•	•	•		•
Overvoltage, Auxiliary	•	•	•								
Overvoltage, Neutral	•	•	•		•	•		•			•
Negative Sequence Overvoltage											
100% Stator Ground Protection				•							
Current Directional, Phase			•								•
Current Directional, Neutral		•	•	•		•	•	•			•
Current Directional, Negative Sequence		•	•								
Power Swing Blocking				•		•	•		•		•
Out-of-Step Tripping											•
AC Reclosing (No. of Shots)	4	4			4	4	4				
Switch on to Fault (Line Pickup)						•	•				

FEATURES	F35	F60	G30	G60	L30	L60	L90	M60	N60	T35	T60
Protection											
Current Transformer Supervision					•	•	•				
Load Encroachment Logic		•				•	•				•
Underfrequency	•	•	•	•	•				•		•
Overfrequency		•	•	•					•		•
Anti-Islanding Protection/Frequency Rate of Change		•	٠	•			٠		•		•
Lockout Functionality	•	•	•	•		•	•	•	•	•	•
Bus Differential											
Line Current Differential					•		•				
Ground Differential		•	•	•	•		•				•
Stator Differential			•	•				٠			
Transformer Differential			•							•	•
Line Phase Comparison						•					
Voltage Differential											
Capacitor Bank Overvoltage											
Neutral Voltage Unbalance											
Automatic Voltage Regulation											
Time of Day Control											
Instantaneous Differential										•	•
Split Phase Protection			•	•							
Line Current Differential Trip Logic							•				
CT Failure			•	•	•	•	•	•		•	•

PROTECTION

100% STATOR GROUND

Operating V_neutral_3rd/(V_neutral_3rd +

quantity: Pickup level: V_zero_3rd) 0.000 to 0.250 pu in steps of 0.001 Dropout level:

97 to 98% of pickup

±2% of reading from 1 to 120 V 0 to 600.00 s in steps of 0.01 Level accuracy: Pickup delay: 0.0010 to 0.1000 pu in steps of 3rd harmonic

supervision level:

±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × Pickup at 60 Hz Time accuracy: Operate time:

ACCELERATION TIME

Acceleration 1.00 to 10.00 × FLA in steps of 0.01 current: Acceleration 0.00 to 180.00 s in steps of 0.01

time: Operating mode: Definite Time, Adaptive

ACCIDENTAL ENERGIZATION

Operating Overcurrent

condition: Arming Undervoltage and/or Machine Offline

condition: Overcurrent:

Pickup level: 0.02 to 3.000 pu in steps of 0.001

Dropout level:

97 to 98% of pickup ±0.5% of reading from 0.1 to 2.0 × Level accuracy: CT rating

Undervoltage: Pickup level: 0.004 to 3.000 pu in steps of 0.001 Dropout level: 102 to 103% of pickup ±0.5% of reading 10 to 208 V < 30 ms at 1.10 × Pickup at 60 Hz Level accuracy: Operate Time:

AUTORECLOSURE C60/D60/L90/L60

Two breakers applications Single- and three-pole tripping schemes Up to 4 reclose attempts before lockout Selectable reclosing mode and breaker sequence

AUTORECLOSURE F60/F35/D30

Single breaker applications, 3-pole tripping schemes Up to 4 reclose attempts before lockout Independent dead time setting before each shot Possibility of changing protection settings after each shot with FlexLogic.

AMP UNBALANCE

Avg and Full RMS Load amps: I_1 and 1_2 amps: Phasor

0.0 to 100.0% in steps of 0.1 Pickup level:

Dropout level: 97 to 98% of pickup

Level accuracy: ±0.1

Pickup delay: 0.00 to 600.00 s in steps of 0.010.00 to 600.00 s in steps of 0.01 Reset delay: Operate time: < 20 ms at 1.10 × pickup at 60 Hz ±3% or ±20 ms, whichever is greater Timing accuracy:

AUXILIARY OVERVOLTAGE

Pickup level: 0.004 to 3.000 pu in steps of 0.001 Dropout level: 97 to 98% of Pickup ±0.5% of reading from 10 to 208 V Level accuracy: 0 to 600.00 s in steps of 0.01 Pickup delay: Reset delay: 0 to 600.00 s in steps of 0.01 ±3% of operate time or ±4 ms Timina (whichever is greater) accuracy Operate time: < 30 ms at 1.10 × pickup at 60 Hz

AUXILIARY UNDERVOLTAGE

Pickup level: 0.004 to 3.000 pu in steps of 0.001 Dropout level: 102 to 103% of pickup ±0.5% of reading from 10 to 208 V GE Vernova IAV Inverse, Definite Level accuracy: Curve shapes: Curve multiplier:

Time Dial = 0 to 600.00 in steps

Timing of 0.01

accuracy:

±3% of operate time or ±4 ms (whichever is greater)

PROTECTION

BREAKER ARCING CURRENT

Principle: Accumulates breaker duty (I2t) and measures fault duration

Initiation: Programmable per phase from any FlexLogic operand

Compensation

0 to 65.535 s in steps of 0.001

for auxiliary relavs:

Alarm threshold: 0 to 50000 kA2-cycle in steps of 1

Fault duration 0.25 of a power cycle

accuracy: Availability: 1 per CT bank with a minimum of 2

BREAKER FAILURE

Mode: 1-pole, 3-pole Current phase, neutral current supervision:

Current supv. 0.02 to 30.000 pu in steps of 0.001 pickup:

Current supv 97 to 98% of pickup

dropout: Current supv. accuracy:

0.1 to 2.0 × CT ±0.75% of reading or ±2% of rated rating: (whichever is greater)

above 2 × CT ±2.5% of reading

rating:

BREAKER FLASHOVER

Operating Phase current, voltage and voltage quantity: Pickup level difference 0.02 to 1.500 pu in steps of 0.001

voltage: **Dropout level**

97 to 98% of pickup voltage: Pickup level 0.004 to 1.500 pu in steps of 0.001

current: **Dropout level** 97 to 98% of pickup

current:

±0.5% or ±0.1% of rated, whichever Level accuracy:

Pickup delay: 0 to 65.535 s in steps of 0.001 $\pm 3\%$ or ± 42 ms, whichever is greater <42 ms at 1.10 × pickup at 60 Hz Time accuracy: Operate time:

BUS DIFFERENTIAL (87B)

Pickup level: 0.050 to 6.000 pu in steps of 0.001 Low slope: 15 to 100% in steps of 1 High slope: 50 to 100% in steps of 1 Low breakpoint: 1.00 to 30.00 pu in steps of 0.01 1.00 to 30.00 pu in steps of 0.01 High breakpoint: High set level: 0.10 to 99.99 pu in steps of 0.01

Dropout level: Level accuracy:

0.1 to 2.0 × CT ±0.5% of reading or ±1% of rated

97 to 98% of Pickup

rating: >2.0 × CT rating (whichever is greater) ±1.5% of reading

Operating time: one power system cycle (typical)

CT TROUBLE

Responding to: Differential current

Pickup level: 0.020 to 2.000 pu in steps of 0.001 Pickup delay: 1.0 to 60.0 sec. in steps of 0.1 Time Accuracy ±3% or ±40ms, whichever is greater 1 per zone of protection (B90) Availability:

GENERATOR UNBALANCE

0.000 to 1.250 pu in steps of 0.001 Gen. nominal current: Stages:

2 (12t with linear reset and definite

0.00 to 100.00% in steps of 0.01 Pickup level: Dropout level: 97 to 98% of pickup

Level accuracy:

0.1 to 2 x CT ±0.5% of reading or 1% of rated rating: (whichever is greater) > 2.0 x CT ±1.5% of reading

rating: Time dial (K-value):

0.00 to 100.00 in steps of 0.01

Pickup delay: 0.0 to 1000.0 s in steps of 0.1 Reset delay: 0.0 to 1000.0 s in steps of 0.1 ±3% or ±20 ms, whichever is greater Time accuracy:

Operate time: < 50 ms at 60 Hz

PROTECTION

GROUND DISTANCE

Characteristic: Mho (memory polarized or offset)

or Quad (memory polarized or nondirectional), selectable individually per zone

Reactance negative-sequence or zero-sequence polarization: current

-40 to 40° in steps of 1 Non-

homogeneity angle:

Number of zones:

Directionality: Forward, Reverse, or Non-Directional

0.02 to 250.00 in steps of 0.01

(secondary W): ±5% including the effect of CVT Reach accuracy:

transients up to an SIR of 30 Distance 30 to 90° in steps of 1

characteristic

angle: Distance 30 to 90° in steps of 1

comparator limit

angle: Directional 30 to 90° in steps of 1

supervision Characteristic angle:

Limit angle: 30 to 90° in steps of 1 0.00 to 10.00 in steps of 0.01

Zero-sequence compensation Z0/Z1 magnitude:

Z0/Z1 angle: -90 to 90° in steps of 1 Zero-sequence

mutual compensation ZOM/Z1

0.00 to 7.00 in steps of 0.01 magnitude: Z0M/Z1 angle: -90 to 90° in steps of 1

Right blinder (Quad only):

0.02 to 500 in steps of 0.01 Reach: Characteristic angle: 60 to 90° in steps of 1

Left blinder (Quad only):

Reach: 0.02 to 500 in steps of 0.01 Characteristic 60 to 90° in steps of 1

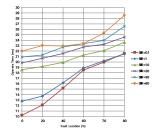
angle: Time delay: 0.000 to 65.535 s in steps of 0.001 ±3% or 4 ms, whichever is greater Timing accuracy:

Current supervision:

Level: neutral current (3I_0)

Pickup: 0.050 to 30.000 pu in steps of 0.001

Dropout: 97 to 98% 5 to 25 cycles in steps of 1 Memory


duration: Voltage 0 to 5.000 pu in steps of 0.001 supervision

pickup (series compensation applications):

Operation time: 1 to 1.5 cycles (typical) Reset time: 1 power cycle (typical)

GROUND DISTANCE OPERATING TIME CURVES

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs).

LINE CURRENT DIFFERENTIAL (87L)

Application: 2 or 3 terminal line, series

compensated line, tapped line, with charging current compensation 0.20 to 4.00 pu in steps of 0.01

Pickup current level:

CT Tap (CT 0.20 to 5.00 in steps of 0.01

mismatch factor):

Slope #1: 1 to 50% Slope # 2: 1 to 70%

Breakpoint 0.0 to 20.0 pu in steps of 0.1

between slopes: DTT:

Direct Transfer Trip (1 and 3 pole)

remote L90

Operating Time: 1.0 to 1.5 power cycles duration Asymmetrical asymmetry up to 10ms

channel delay compensation using GPS:

LINE CURRENT DIFFERENTIAL TRIP LOGIC

87L trip: Adds security for trip decision; creates 1 and 3 pole trip logic DTT: Engaged Direct Transfer Trip (1 and 3

pole) from remote L90 Sensitive Disturbance Detector to DD:

detect fault occurrence

Security for ring bus and 11/2 breaker Stub bus

configurations protection:

Open pole Security for sequential and evolving

detector: faults

LINE PICKUP

Phase IOC: 0.02 to 30.000 pu Undervoltage 0.004 to 3.000 pu

pickup: Overvoltage

0.000 to 65.535 s delay:

LOAD ENCROACHMENT

Positive-sequence quantities Responds to: Minimum 0.004 to 3.000 pu in steps of 0.001 voltage:

Reach (sec. W): Impedance

0.02 to 250.00 in steps of 0.01

accuracy:

5 to 50° in steps of 1 Angle:

Angle accuracy:

Pickup delay: 0 to 65.535 s in steps of 0.001 Reset delay: 0 to 65.535 s in steps of 0.001 ±3% or ±4 ms, whichever is greater Time accuracy:

< 30 ms at 60 Hz Operate time:

LOSS OF EXCITATION

Operating Positive-sequence impedance condition Characteristic: 2 independent offset mho circles Center: 0.10 to 300.0 (sec.) in steps of 0.01 Radius: 0.10 to 300.0. (sec.) in steps of 0.01

Reach accuracy: Undervoltage

supervision

0.000 to 1.250 pu in steps of 0.001 Level: ± 0.5% of reading from 10 to 208V Accuracy Pickup delay: 0 to 65.535 s in steps of 0.001 Timing accuracy: ±3% or ±20 ms, whichever is greater

Operate time: <50 ms

MECHANICAL JAM

Operating Phase overcurrent condition Armina Motor not starting

condition:

Pickup level: 1.00 to 10.00 × FLA in steps of 0.01

Dropout level: 97 to 98% of pickup at 0.1 to 2.0 × CT: ±0.5% of reading Level accuracy:

at > 2.0 × CT ±1.5% of reading

rating: 0.10 to 600.00 s in steps of 0.01 Pickup delay: 0.00 to 600.00 s in steps of 0.01 Reset delay: Time accuracy: ±3% or ±20 ms, whichever is greater

MOTOR START SUPERVISION

Maximum no. of 1 to 16 in steps of 1

Monitored time 1 to 300 minutes in steps of 1 interval:

starts:

Time between

starts:

Restart delay: 0 to 50000 seconds in steps of 1

0 to 300 minutes in steps of 1

PROTECTION

NEGATIVE SEQUENCE DIRECTIONAL OC

Directionality: Co-existing forward and reverse

Polarizing: Voltage Polarizing V 2 voltage: Operating 1 2 or 1 0 current:

Level sensing:

|I_0| - K × |I_1| |I_2| - K × |I_1| Zero-sequence: Negative-

sequence: 0.000 to 0.500 in steps of 0.001 Restraint, K: Characteristic

0 to 90° in steps of 1 angle: Limit angle:

40 to 90° in steps of 1, independent for forward and reverse

Angle accuracy: Offset

0.00 to 250.00W in steps of 0.01 impedance: 0.05 to 30.00 pu in steps of 0.01

Pickup level: Dropout level: 97 to 98%

Operation time: < 16 ms at 3 × Pickup at 60 Hz

NEGATIVE SEQUENCE IOC

Current: Phasoi

Pickup level: 0.02 to 30.000 pu in steps of 0.001 Dropout level: 97 to 98% of Pickup

Level accuracy: 0.1 to 2.0 × CT rating:

±0.5% of reading or ±1% of rated (whichever is greater)> 2.0 × CT rating: ±1.5% of reading

Overreach:

0.00 to 600.00 s in steps of 0.01 Pickup delay: Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: < 20 ms at 3 × Pickup at 60 Hz Operate at 1.5 × Pickup ±3% or ± 4 ms Timing (whichever is greater) accuracy:

NEGATIVE SEQUENCE OVERVOLTAGE

Pickup level: 0.004 to 1.250 pu in steps of 0.001 Dropout level: 97 to 98% of Pickup

±0.5% of reading from 10 to 208 V Level accuracy: Pickup delay: 0 to 600.00 s in steps of 0.01 Reset delay: 0 to 600.00 s in steps of 0.01 ±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × Pickup at 60 Hz Time accuracy: Operate time:

NEGATIVE SEQUENCE TOC

Current: Phasoi

0.02 to 30.000 pu in steps of 0.001 97% to 98% of Pickup Pickup level: Dropout level:

±0.5% of reading or ±1% of rated Level accuracy: (whichever is greater from 0.1 to 2.0 \times CT rating ±1.5% of reading > 2.0 \times

CT rating

IEEE Moderately/Very/Extremely Curve shapes:

Inverse; IEC (and BS) A/B/C and Short Inverse; GE Vernova IAC Inverse, Short/Very/Extremely Inverse; I2t; FlexCurves (programmable); Definite Time (0.01

Curve multiplier s base curve)

0.00 to 600.00 in steps of 0.01 (Time dial): Reset type:

Instantaneous/Timed (per IEEE) and

Timing accuracy: L ear

Operate at > 1.03 × Actual Pickup ±3.5% of operate time or ±1/2 cycle (whichever is greater)

NEUTRAL DIRECTIONAL OVERCURRENT

Directionality: Co-existing forward and reverse Polarizing: Voltage, Current, Dual, Dual-I, Dual-V V 0 or VX

Polarizing voltage:

Polarizing IG current: 10

Operating current:

Level sensing:

 $3 \times (|I_0| - K \times |I_1|), IG$ 0.000 to 0.500 in steps of 0.001 Restraint K: Characteristic -90 to 90° in steps of 1

angle: Limit angle:

40 to 90° in steps of 1, independent for forward and reverse

Angle accuracy: Offset

0.00 to 250.00W in steps of 0.01

impedance: Pickup level:

0.05 to 30.00 pu in steps of 0.01 97

Dropout level: to 98%

Operation time: < 16 ms at 3 × Pickup at 60 Hz

PROTECTION

NEUTRAL OVERVOLTAGE

Pickup level: 0.004 to 3.000 pu in steps of 0.001 Polarizing: Voltage, Current, Dual, Dual-I, Dual-V Level accuracy: ±0.5% of reading from 10 to 208 V 0.00 to 600.00 s in steps of 0.01 Pickup delay: Reset delay: 0.00 to 600.00 s in steps of 0.01 ±3% or ±20 ms (whichever is greater) Timing accuracy: Operate time: < 30 ms at 1.10 × Pickup at 60 Hz

OPEN POLE DETECTOR

Detects an open pole condition, monitoring breaker auxiliary contacts, the current in each phase and optional voltages on the line

Current pickup level: Line capacitive

0.02 to 30.000 pu in steps of 0.001 300.0 to 9999.9 sec. W in steps of 0.1

reactances (XC1, XCO):

Remote current 0.02 to 30.000 pu in steps of 0.001

pickup level:

Current dropout Pickup + 3%, not less than 0.05 pu

level:

OVERFREQUENCY

Pickup level:

20.00 to 65.00 Hz in steps of 0.01 Dropout level: Pickup - 0.03 Hz

Level accuracy: ±0.01 Hz

Time delay: 0 to 65.535 s in steps of 0.001 ±3% or 4 ms, whichever is greater

PHASE COMPARISON PROTECTION (87PC)

Signal Selection: Mixed I_2 - K x I_1 (K=0.00 to 0.25 in steps of 0.01, or3I_0)

Angle Reference: 0 to 360° leading in steps of 1

Faultdetector low:

Instantaneous 0.02 to 15.00 pu in steps of 0.01

Overcurrent: I₂ x Z - V₂: dl₂ / d₂: 0.005 to 15.00 pu in steps of 0.01 0.01 to 5.00 pu in steps of 0.01 dl / d: 0.01 to 5.00 pu in steps of 0.01

Fault detector

High: 0.10 to 15.00 pu in steps of 0.01 Instantaneous

Overcurrent:

I, x Z - V,: 0.005 to 15.00 pu in steps of 0.01 dl₂ / d₁: dl₁ / d₁: 0.01 to 5.00 pu in steps of 0.01 0.01 to 5.00 pu in steps of 0.01 Signal Symmetry -0.5 to 5.0 ms in steps of 0.1

Adjustment:

Channel Delay 0.000 to 30.00 ms in steps of 0.001 Adjustment:

Channel

channel delay and signal symmetry Adjustments: compensation

Operate Time 3/4 cycle for single phase comparison (Typical):

Trip Security: First coincidence or enhanced Second 10 to 200 ms in steps of 1

Coincidence Timer: **Enhanced**

40 to 180° in steps of 1

Stability Angle:

PHASE DIRECTIONAL OVERCURRENT 90° (quadrature)

Relay connection: Quadrature

voltage: ABC phase seq.: phase A (V_{BC}), phase B (V_{CA}),

phase C (V_{AB}) phase A (V_{CB}), phase B (V_{AC}), ACB phase seq.:

uq 20.0

0.004 to 3.000 pu in steps of 0.001

phase C (V Polarizing

voltage threshold:

Current

sensitivity

threshold: Characteristic

0 to 359° in steps of 1 angle: Angle accuracy: ±2° Operation time: (FlexLogic

elements): < 12 ms, typically

Tripping (reverse load, forward fault):

Blocking < 8 ms, typically

(forward load reverse fault):

PHASE DISTANCE

Characteristic: Mho (memory polarized or offset)

or Quad (memory polarized or nondirectional), selectable individually per zone

Number of Up to 5

zones: Directionality:

Reach accuracy:

Forward, Reverse, or Non-Directional

Reach 0.02 to 250.00 in steps of 0.01 (secondary W):

> ±5% including the effect of CVT transients up to an SIR of 30

Distance: Characteristic

30 to 90° in steps of 1

angle:

Comparator limit 30 to 90° in steps of 1

angle: Directional supervision

Characteristic 30 to 90° in steps of 1 angle: Limit angle: 30 to 90° in steps of 1

Right blinder (Quad only):

Reach: 0.02 to 500 in steps of 0.01 Characteristic 60 to 90° in steps of 1

angle: Left Blinder (Quad only):

0.02 to 500 in steps of 0.01 Reach: Characteristic 60 to 90° in steps of 1

angle: Time delay: 0.000 to 65.535 s in steps of 0.001 Timing accuracy: ±3% or 4 ms, whichever is greater Current

supervision:

Level: line-to-line current

Pickup: 0.050 to 30.000 pu in steps of 0.001

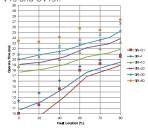
Dropout: 97 to 98% 5 to 25 cycles in steps of 1

Memory duration:

VT location: all delta-wye and wye-delta

transformers

CT location: all delta-wye and wye-delta


transformers

Voltage 0 to 5.000 pu in steps of 0.001 supervision

pickup (series compensation applications):

PHASE DISTANCE OPERATING TIME CURVES

The operating times are response times of a microprocessor part of the relay. See output contacts specifications for estimation of the total response time for a particular application. The operating times are average times including variables such as fault inception angle or type of a voltage source (magnetic VTs and CVTs)

PHASE/NEUTRAL/GROUND IOC

Pickup level: 0.02 to 30.000 pu in steps of 0.001

Dropout level: 97 to 98% of pickup

Level accuracy: 0.1 to 2.0 x CT

±0.5% of reading or ±1% of rated (whichever is greater)

rating: > 2.0 × CT rating: ±1.5% of reading

<2%

Overreach:

0.00 to 600.00 s in steps of 0.01 Pickup delay: Reset delay: 0.00 to 600.00 s in steps of 0.01 Operate time: <16ms at 3 × pickup at 60Hz (Phase)

Ground IOC) <20ms at 3 × pickup at

60Hz (Neutral IOC)

Operate at 1.5 × Pickup ±3% or ±4 ms Timing accuracy:

(whichever is greater)

PROTECTION

PHASE/NEUTRAL/GROUND TOC

Current: Phasor or RMS

0.02 to 30.000 pu in steps of 0.001 Pickup level: 97% to 98% of Pickup for 0.1 to 2.0 × CT: ±0.5% of reading Dropout level: Level accuracy:

or ±1% of rated (whichever is greater) for $> 2.0 \times CT$: ±1.5% of reading > 2.0 × CT rating

IEEE Moderately/Very/Extremely Inverse; IEC (and BS) A/B/C and Curve shapes:

Short Inverse; GE Vernova IAC Inverse, Short/Very/Extremely Inverse; I2t; FlexCurves. (programmable); Definite Time (0.01

s base curve)

Curve multiplier: Time Dial = 0.00 to 600.00 in steps

of 0.01

Reset type: Instantaneous/Timed (per IEEE) Timing accuracy: Operate at > 1.03 × actual Pickup ±3.5% of operate time or ±1/2 cycle

(whichever is greater)

PHASE OVERVOLTAGE

Voltage:

Phasor only 0.004 to 3.000 pu in steps of 0.001 Pickup level:

Dropout level: 97 to 98% of Pickup

Level accuracy: ±0.5% of reading from 10 to 208V 0.00 to 600.00 in steps of 0.01 s Pickup delay: < 30 ms at 1.10 × Pickup at 60 Hz Operate time: ±3% or ±4 ms (whichever is greater) Timing accuracy:

PHASE UNDERVOLTAGE

Voltage: Phasor only

Pickup level: 0.004 to 3.000 pu in steps of 0.001

102 to 103% of Pickup Dropout level:

±0.5% of reading from 10 to 208V Level accuracy: Curve shapes: GE Vernova IAV Inverse; Definite

Time (0.1s base curve) Time Dial = 0.00 to 600.00 in steps

Curve multiplier: of 0.01

Timing accuracy: Operate at < 0.90 × Pickup ±3.5% of

operate time or ±4 ms (whichever is greater)

PILOT-AIDED SCHEMES

Direct Underreaching Transfer Trip (DUTT) Permissive Underreaching Transfer Trip (PUTT) Permissive Overreaching Transfer Trip (POTT)

Hybrid POTT Scheme

Directional Comparison Blocking Scheme Customizable version of the POTT and DCB schemes (POTT1 and DCB1)

POWER SWING DETECT

Functions: Power swing block, Out-of-step trip Characteristic: Mho or Quad

Measured impedance: Blocking /

Positive-sequence 2-step or 3-step tripping mozes:

Current

Early or Delayed Tripping mode:

supervision:

Pickup level: 0.050 to 30.000 pu in steps of 0.001 Dropout level: 97 to 98% of Pickup 0.10 to 500.00W in steps of 0.01

Fwd / reverse reach (sec. W): Left and

0.10 to 500.00W in steps of 0.01

right blinders (sec. W):

Impedance ±5%

accuracy:

Fwd / reverse angle

40 to 90° in steps of 1

impedances: Angle accuracy:

40 to 140° in steps of 1 Characteristic

limit angles:

Timers: 0.000 to 65.535 s in steps of 0.001

±3% or 4 ms, whichever is greater Timing accuracy:

PROTECTION

RATE OF CHANGE OF FREQUENCY

increasing, decreasing, bi-directional 0.10 to 15.00 Hz/s in steps of 0.01 df/dt trend: df/dt pickup

level: df/dt dropout

96% of pickup

level: df/dt level

80 mHz/s or 3.5%, whichever is accuracy:

0.02 to 3.000 pu in steps of 0.001

Overvoltage

supv.: Overcurrent 0.000 to 30.000 pu in steps of 0.001

supv.: Pickup delay: 0 to 65.535 s in steps of 0.001 0 to 65.535 s in steps of 0.001 Reset delay: ±3% or ±4 ms, whichever is greater Time accuracy:

95% settling time < 24 cycles

for df/dt: Operate time:

at 2 × pickup: 12 cycles at 3 × pickup: 8 cycles at 5 × pickup: 6 cycles

RESTRICTED GROUND FAULT

0.000 to 30.000 pu in steps of 0.001 Pickup: 97 to 98% of Pickup Dropout:

0 to 100% in steps of 1% Slope: Pickup delay: 0 to 600.00 s in steps of 0.01 Dropout delay: 0 to 600 00 s in steps of 0.01 Operate time: < 1power system cycle

SENSITIVE DIRECTIONAL POWER

Measured power: 3-phase, true RMS

Number of stages

Characteristic 0 to 359° in steps of 1

angle:

Calibration angle: 0.00 to 0.95° in steps of 0.05±0.5% Minimum power: -1.200 to 1.200 pu in steps of 0.001 Pickup level ±1% or ±0.001 pu, whichever is greater

accuracy: Hysteresis: 2% or 0.001 pu, whichever is greater 0 to 600.00 s in steps of 0.01 Pickup delay:

±3% or ±4 ms, whichever is greater Time accuracy:

Operate time:

SPLIT PHASE PROTECTION Operating split phast CT current biased by

quantity: generator load current Pickup level: 0.000 to 1.500 pu in steps of 0.001

Dropout level: 97 to 98% of pickup Level accuracy: ±0.5% of reading or ±1% of rated Pickup delay: 0.000 to 65.535 s in steps of 0.001 ±3% of ± cycles, whichever is greater < 5 cycles at 1.10 x pickup at 60Hz Time accuracy:

Operate time: STATOR DIFFERENTIAL

Pickup: 0.050 to 1.00 pu in steps of 0.01 Slope 1/2: 1 to 100% in steps of 1 1.00 to 1.50 pu in steps of 0.01 Break 1 Break 2: 1.50 to 30.00 pu in steps of 0.01

Level accuracy:

SYNCHROCHECK

Max voltage difference:

0 to 400000 V in steps of 1

Max angle 0 to 100° in steps of 1 difference:

difference: Hysteresis for

Max freg.

function:

0.00 to 0.10 Hz in steps of 0.01

max. freq. diff.: None, LV1 & DV2, DV1 & LV2, DV1 or Dead source

0.00 to 2.00 Hz in steps of 0.01

DV2, DV1 xor DV2, DV1 & DV2 (L = Live, D = Dead)

Freq. Slip Maximun dF: Freq. Slip Minimun dF:

0.10 to 2.00 in steps of 0.01 Hz 0.01 to 1.00 in steps of 0.01 Hz 0.010 to 0.500 in steps of 0.001 s

Frea, Slip Close **Breaker Time:**

PROTECTION

THERMAL MODEL

Thermal overload Standard curve, FlexCurve, voltage

dependent curve curves:

0.00 to 600.00 in steps of 0.01 Standard **Curve Time**

Multiplier:

pu = overload factor x FLA Thermal

Overload Pickup:

Overload (OF): 1.00 to 1.50 in steps of 0.001 Standard

Overload Curve:

trip time =

TD x 2.2116623

motor 2 + 0.05054758 x 0.02530337 x OF x FLA

Motor Rated Voltage:

1 to 50000 V in steps of 1

Thermal Motor Biasing:

Current unbalance, RTDs

Thermal Model

Update Rate: Stopped/Running 1 to 65000 min. in steps of 1

1 power cycle

Time Cool

Constants

Stopped/Running Exponential Time Cool

Constants

Decay: Hot/Cold Safe

0.01 to 1.00 in steps of 0.01

Stall Ratio: Current

Per phase current inputs Accuracy

Current Source: True RMS ± 100 ms or ± 2% whichever is greater **Timing Accuracy**

± 100 ms or ± 4%, whichever is greater **Timing Accuracy** for Voltage

Dependent Overload:

THIRD HARMONIC NEUTRAL UNDERVOLTAGE

Operating 3rd harmonic of auxiliary

quantity: undervoltage Pickup level: 0.001 to 3.000 pu in steps of 0.001

102 to 103% of pickup Dropout level: ±2% of reading from 1 to 120V

Accuracy: Power:

0.000 to 1.200 pu in steps of 0.001 Pickup level:

Dropout level: 97 to 98% of pickup

Accuracy: ±5% or ±0.01 pu, whichever is greater

Undervoltage 0.000 to 3.000 pu in steps of 0.001 pu

Inhibit Level:

±0.5% of reading from 10 to 208V Accuracy: Pickup delay: 0 to 600.00 s in steps of 0.01 Time accuracy: ±3% or ±20 ms, whichever is greater < 30 ms at 1.10 × pickup at 60 Hz Operate time:

TRANSFORMER AGING FACTOR

Operating computed aging accelaration factor quantity: (uq)

to 10 pu in steps of 0.1 Pickup level: Pickup delay: 0 to 30000 min. in steps of 1

TRANSFORMER INSTANTANEOUS DIFFERENTIAL

2.00 to 30.00 pu in steps of 0.01 Pickup level:

Dropout level: 97 to 98% of pickup ±0.5% of reading or ±1% of rated Level accuracy: (whichever is greater)

Operate time: < 20 ms at 3 × pickup at 60 Hz

TRANSFORMER HOTTEST-SPOT TEMPERATURE

Operating computed temperature in °C

quantity:

50 to 300°C in steps of 1 Pickup level:

Dropout level: 1°C below pickup Pickup delay: 0 to 30000 min. in steps of 1

TRANSFORMER LOSS OF LIFE

Operating computed accumulated transformer

quantity: loss of life, in hours

Pickup level: 0 to 500000 hours in steps of 1

PROTECTION

zones:

TRANSFORMER PERCENT DIFFERENTIAL

Characteristic: Differential Restraint pre-set

Number of

Minimum pickup: 0.05 to 1.00 pu in steps of 0.001 Slope 1 range: 15 to 100% in steps of 1% 50 to 100% in steps of 1% Slope 2 range: Kneepoint 1: 1.0 to 2.0 pu in steps of 0.0001 Kneepoint 2: 2.0 to 30.0 pu in steps of 0.0001 2nd harmonic 1.0 to 40.0% in steps of 0.1 inhibit level:

2nd harmonic inhibit function:

Adaptive, Traditional, Disabled

2nd harmonic inhibit mode: 5th harmonic

Per-phase, 2-out-of-3, Average 1.0 to 40.0% in steps of 0.1

inhibit range: Operate times:

20 to 30 ms

. Harmonic inhibits selected: No harmonic

5 to 20 ms

inhibits selected:

Dropout level: 97 to 98% of pickup

Level accuracy: ±0.5% of reading or ±1% of rated

(whichever is greater)

TRIP OUTPUT

Collects trip and reclose input requests and issues outputs to control tripping and reclosing

Communications 0 to 65535 s in steps of 0.001 timer delay:

Evolving fault timer:

0.000 to 65.535 s in steps of 0.001

Timing accuracy: ±3% or 4 ms, whichever is greater UNDERFREQUENCY

Minimum signal: 0.10 to 1.25 pu in steps of 0.01 20.00 to 65.00 Hz in steps of 0.01 Pickup level:

Dropout level: Pickup + 0.03 Hz ±0.01 Hz

Level accuracy: 0 to 65.535 s in steps of 0.001 Time delay: Timer accuracy: ±3% or 4 ms, whichever is greater

VOLTS PER HERTZ

Voltage: Phasor only

Pickup level: 0.80 to 4.00 in steps of 0.01 pu V/Hz

Dropout level: 97 to 98% of Pickup Level accuracy: ±0.02 pu

Timing curves: Definite Time; Inverse A, B, and C, FlexCurves. A, B, C, and D

TD Multiplier: 0.05 to 600.00 s in steps of 0.01 0.0 to 1000.0 s in steps of 0.1 Reset delay: Timing accuracy: ±3% or ± 4 ms (whichever is greater)

VT FUSE FAIL

V_2, V_1, I_1 Monitored

WATTMETRIC ZERO-SEQUENCE DIRECTIONAL

Measured Power Zero-Sequence

Number of Flements:

Characteristic

Angle:

0 to 360° in steps of 1 Minimum Power:

Pickup Level Accuracy: Pickup Delay:

0.001 to 1.20pu in steps of 0.001 ±1% or ± 0.0025 pu, whichever is

0.01 to 2.00 s in steps of 0.01

Definite time (0 to 600.00 s in steps Inverse Time of 0.01), inverse time, or FlexCurve

Multiplier: **Time Accuracy:**

±3% or ±8 ms, whichever is greater Operate Time:

<30 ms at 60 Hz

MONITORING

DATA LOGGER

Number of 1 to 16

channels: Parameters:

Any available analog actual value 15 to 3600000 ms in steps of 1 Sampling rate: Trigger Any FlexLogic operand Mode: Continuous or Triggered
Storage capacity: (NN is dependent on memory)

1-second rate: 01 channel for NN days 16 channels for NN days 60-minute rate: 01 channel for NN days 16 channels for NN days

MONITORING

Triggers:

EVENT RECORDER

Capacity: 1024 events Time-tag: to 1 microsecond

Any element pickup, dropout or operate Digital input change of state Digital output change of state Self-

test events

Data storage: In non-volatile memory

FAULT LOCATOR

Method: Single-ended

Fault resistance is zero or fault Maximum currents from all line terminals are accuracy if:

in phase

Relay accuracy: $\pm 1.5\%$ (V > 10 V. I > 0.1 pu)

Worst-case accuracy:

VT%error + (user data) CT%error + (user data) ZLine%error + (user data) METHOD%error + (Chapter 6) RELAY ACCURACY%error + (1.5%)

HIGH-IMPEDANCE FAULT DETECTION (HIZ)

Detections: Arc Suspected, Arc Detected, Downed

Conductor, Phase Identification OSCILLOGRAPHY

Maximum

records:

Sampling rate: 64 samples per power cycle Triggers: Any element pickup, dropout or

operate

Digital input change of state Digital output change of state Any FlexLogic Operand FlexLogic Equation

32 (any FlexAnalog value)

AC input channels Element state Digital input state Digital output state

Data storage: In non-volatile memory

USER-PROGRAMMABLE FAULT REPORT Number of

Pre-fault trigger: any FlexLogic. operand Fault trigger: any FlexLogic. operand

Recorder quantities:

Data:

PHASOR MEASUREMENT UNIT

per IEEE C37.118 standard **Output format:** 14 synchrophasors, 16 analogs, 16 Number of channels

TVE (total vector error):

Triggering: frequency, voltage, current, power, rate of change of frequency, user

defined

1, 2, 5, 10, 12, 15, 20, 25, 30, 50, 60 Reporting rate:

or 120 times per second 1.00 to 1.50 in steps of 0.001

Number of One over TCP/IP port, two over UDP/

IP ports clients: TAC ranges:

As indicated in appropriate specifications sections . 16-bit integer or 32-bit IEEE floating Network

point numbers reporting format:

Network Rectangular (real and imaginary)

reporting style: or polar (magnitude and angle) coordinates

Filtering: P and M class

Angle ±5°, magnitude +/-5% per Calibration:

phase

Compensation: -180 to 180° in steps of 30° (current

and voltage components) Mode of Normal and test

operation:

PMU Recording: 46 configurable channels (14

syncrophasor, 16 digital, 16 analogs)

METERING

RMS CURRENT: PHASE, NEUTRAL, AND GROUND

Accuracy at: 0.1 to 2.0 x CT

rating: ±0.25% of reading or ±0.1% of rated

(whichever is greater) > 2.0 × CT rating: ±1.0% of reading

RMS VOLTAGE

 $\pm 0.5\%$ of reading from 10 to 208 V Accuracy

REAL POWER (WATTS)

±1.0% of reading at -0.8 < PF < -1.0 Accuracy

and 0.8 < PF < 1.0 **REACTIVE POWER (VARS)**

Accuracy: ±1.0% of reading at -0.2 < PF < 0.2

APPARENT POWER (VA)

±1.0% of reading Accuracy:

WATT-HOURS (POSITIVE AND NEGATIVE) Accuracy: ±2.0% of reading

±0 to 2 × 109 MWh Range: Parameters: 3-phase only Update rate: 50 ms

VAR-HOURS (POSITIVE AND NEGATIVE)

±2.0% of reading Accuracy: ±0 to 2 × 109 Mvarh Range: Parameters: 3-phase only

Update rate: 50 ms **CURRENT HARMONICS**

2nd to 25th harmonic: per phase, Harmonics:

displayed as a % of f1 (fundamental frequency phasor) THD: per phase,

displayed as a % of f1

Accuracy: Harmonics

THD:

1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of

100%, whichever is greater 2. f1 < 0.4pu: as above plus %error

of f1

1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of

100%, whichever is greater 2. f1 < 0.4pu: as above plus %error

of f1

DEMAND

Measurements: Phases A, B, and C present and maximum measured currents

3-Phase Power (P, Q, and S) present and maximum measured currents

Accuracy

METERING

FREQUENCY

±0.01 Hz (when voltage signal is used Accuracy at V = 0.8 to 1.2 pu: for frequency measurement)

 $I = 0.1 \text{ to } 0.25 \text{ pu: } \pm 0.05 \text{ Hz}$

±0.02 Hz (when current signal is used I > 0.25 pu: for frequency measurement)

VOLTAGE HARMONICS

2nd to 25th harmonic: per phase, displayed as a % of f1 (fundamental Harmonics:

frequency phasor) THD: per phase,

displayed as a % of f1

Accuracy: Harmonics:

THD

1. f1 > 0.4pu: (0.20% + 0.035% / harmonic) of reading or 0.15% of 100%, whichever is greater

2. f1 < 0.4pu: as above plus %error

of f1

1. f1 > 0.4pu: (0.25% + 0.035% / harmonic) of reading or 0.20% of 100%, whichever is greater

2. f1 < 0.4pu: as above plus %error

USER-PROGRAMMABLE ELEMENTS

CONTROL PUSHBUTTONS

Number of 3 (standard), 16 (UR Enhanced HMI) pushbuttons: or 8 plus 10 soft pushbuttons (UR color HMI)

drive FlexLogic. operands Operation:

FLEXCURVES

4 (A through D) Number: 40 (0 through 1 of pickup) 80 (1 through 20 of pickup) Reset points: Operate points: Time delay: 0 to 65535 ms in steps of 1

FLEXLOGIC

Programming Reverse Polish Notation with graphical visualization (keypad programmable) language:

Lines of code: 1024 Internal 64

variables: Supported NOT, XOR, OR (2 to 16 inputs), AND (2 operations: to 16 inputs), NOR (2 to 16 inputs),

NAND (2 to 16 inputs), Latch (Reset Dominant), Edge Detectors, Timers any logical variable, contact, or

virtual input Number of 32

timers: Pickup delay:

0 to 60000 (ms, sec., min.) in steps

0 to 60000 (ms, sec., min.) in steps Dropout delay: of 1

FLEXELEMENTS

Number of elements:

Inputs:

Operating signal: any analog actual value, or two Operating signal values in Differential mode mode: Signed or Absolute Value

Operating mode: Comparator

Level. Delta direction:

Pickup Level: Over, Under

Hysteresis: -30.000 to 30.000 pu in steps of 0.001 Delta dt:

Pickup & dropout 0.1 to 50.0% in steps of 0.1 20 ms to

delay:

60 days 0.000 to 65.535 s in steps of

0.001

FLEXSTATES

up to 256 logical variables Number: grouped under 16 Modbus addresses

any logical variable, contact, Programmability:

or virtual input

USER-PROGRAMMABLE ELEMENTS

LED TEST

Initiation: from any digital input or user

programmable condition Number of tests: 3, interruptible at any time **Duration of full** approximately 3 minutes

test:

Test sequence 1: all LEDs on

Test sequence 2: all LEDs off, one LED at a time on for 1 s

Test sequence 3: all LEDs on, one LED at a time off for 1 s

NON-VOLATILE LATCHES

Set-dominant or Resetdominant Type: Number: 16 (individually programmed) Output: Stored in non-volatile memory Execution As input prior to protection, control, and FlexLogic

SELECTOR SWITCH

Number of

elements:

sequence:

Upper position 1 to 7 in steps of 1 limit:

Selecting mode: Time-out or Acknowledge Time-out timer: 3.0 to 60.0 s in steps of 0.1 step-up and 3-bit Control inputs:

Power-up mode: restore from non-volatile memory or

synchronize to a 3-bit control input

USER-DEFINABLE DISPLAYS

Number of

displays: Lines of display: 2 × 20 alphanumeric characters

Parameters up to 5, any Modbus register

addresses

Invoking and keypad, or any user-programmable scrolling: condition, including pushbuttons

USER-PROGRAMMABLE LEDS

Number: 48 plus Trip and Alarm (UR Enhanced

HMI), 8 plus Trip and Alarm (UR

Color HMI)

Programfrom any logical variable, contact, or

mability: virtual input

Reset mode: Self-reset or Latched USER-PROGRAMMABLE PUSHBUTTONS (OPTIONAL)

Number of 13 (standard), 16 (UR Enhanced pushbuttons: HMI) or 8 plus 10 soft pushbuttons (UR color HMI)

Mode: Self-Reset, Latched Display message: 2 lines of 20 characters each

8-BIT SWITCH

Number of 6

elements: Input signals: two 8-bit integers via FlexLogic

operands

Control: any FlexLogic operand < 8 ms at 60 Hz, < 10 ms at 50 Hz Response time:

INPUTS

AC CURRENT

CT rated 1 to 50000 A

primary: CT rated

secondary: Nominal 20 to 65 Hz

frequency: Relay burden:

< 0.2 VA at rated secondary

Conversion range:

Current

withstand:

Standard CT: 0.02 to 46 × CT rating RMS

1 A or 5 A by connection

Sensitive symmetrical

Ground/HI-Z CT

module: 0.002 to 4.6 × CT rating RMS symmetrical

20 ms at 250 times rated 1 sec. at 100 times rated continuous at 3 times rated continuous 4xInom; URs equipped

with 24 CT inputs have a maximum operating temp. of 50°C

AC VOLTAGE

50.0 to 240.0 V

VT rated secondary: VT ratio:

1.00 to 24000.00

Nominal 20 to 65 Hz For the L90, the nominal frequency:

system frequency should be chosen as 50 Hz or 60 Hz only.

Relay burden: < 0.25 VA at 120 V Conversion 1 to 275 V

range:

Voltage continuous at 260 V to neutral withstand: 1 min./hr at 420 V to neutral

CONTACT INPUTS

1000 O maximum Dry contacts: 300 V DC maximum Wet contacts: Selectable 17 V, 33 V, 84 V, 166 V

thresholds:

Tolerance: ±10% **Contacts Per** 4 Common Return: Recognition < 1 ms time:

Debounce timer: 0.0 to 16.0 ms in steps of 0.5 Continuous 3mA (when energized)

Current Draw:

CONTACT INPUTS WITH AUTO-BURNISHING

Dry contacts: 1000 Ω maximum Wet contacts: 300 V DC maximum Selectable 17 V, 33 V, 84 V, 166 V

thresholds: Tolerance: **Contacts Per** Common Return: Recognition < 1 ms

Debounce timer: 0.0 to 16.0 ms in steps of 0.5 Continuous 3mA (when energized)

Current Draw:

Auto-Burnish 50 to 70 mA Impulse Current: **Duration of** 25 to 50 ms Auto-Burnish

Impulse:

DCMA INPUTS

0 to -1, 0 to +1, -1 to +1, 0 to 5, 0 to **Current input** (mA DC): 10, 0 to 20, 4 to 20 (programmable)

Input impedance: 379 ±10% Conversion -1 to + 20 mA DC range: ±0.2% of full scale Accuracy

Type: Passive

DIRECT INPUTS

Number of input 32 points: No. of remote

Default states on On, Off, Latest/Off, Latest/On

loss of comms.:

devices:

Ring Yes. No configuration: Data rate: 64 or 128 kbps

CRC: 32-bit CRC alarm:

Rate of messages failing the CRC Responding to: Monitoring 10 to 10000 in steps of 1 message count:

Alarm threshold: 1 to 1000 in steps of 1 Unreturned

message alarm:

Responding to: Rate of unreturned messages in the

ring configuration 10 to 10000 in steps of 1

Monitoring message count:

Alarm threshold: 1 to 1000 in steps of 1

IRIG-B INPUT

Amplitude 1 to 10 V pk-pk

modulation: TTL DC shift:

Input impedance: 22 kW Isolation:

INPUTS

REMOTE INPUTS (IEC 61850 GSSF)

Number of input 32, configured from 64 incoming bit pairs

points: . Number of 16 remote devices:

Default states on On, Off, Latest/Off, Latest/On

RTD INPUTS

100 O Platinum 100 W & Types (3-wire): 120 Ω Nickel, 10 W Copper

5 mA

Sensing current: Range: -50 to +250°C Accuracy: ±2°C Isolation: 36 V pk-pk

OUTPUTS

CONTROL POWER EXTERNAL OUTPUT

(FOR DRY CONTACT INPUT)

100 mA DC at 48 V DC Capacity:

Isolation: ±300 Vpk

DCMA OUTPUTS

Range: Max. load -1 to 1 mA, 0 to 1 mA, 4 to 20 mA 12 k for -1 to 1 mA range 12 k for 0 to 1 mA range resistance: 600 for 4 to 20 mA range

Accuracy:

±0.75% of full-scale for 0 to 1 mA

±0.5% of full-scale for -1 to 1 mA range

±0.75% of full-scale for 0 to 20 mA

range 99% Settling 100 ms

time to a step change:

Isolation:

Driving signal: any FlexAnalog quantity -90 to 90 pu in steps of 0.001 Upper & lower

limit for the driving signal: **DIRECT OUTPUTS**

Output points: 32

FORM-A CURRENT MONITOR

Threshold approx. 80 to 100 mA current:

FORM-A RELAY

Make & carry for 30 A as per ANSI C37.90

0.2s: Carry continuous:

Break at L/R of 1 A DC max, at 24 V 40 ms:

0.5 A DC max. at 48 V 0.3 A DC max. at 125 V 0.2 A DC max, at 250 V

approx. 15 to 250 V DC

< 4 ms Operate time: Contact material: Silver alloy

FORM-A VOLTAGE MONITOR

Applicable voltage:

Trickle current: approx. 1 to 2.5 mA

INPUT VOLTAGE	IMPEDANCE			
	2W RESISTOR	1W RESISTOR		
250 V DC	20 K	50K		
120 V DC	5 K	2 K		
48 V DC	2 K	2 K		
24 V DC	2 K	2 K		

FORM-C AND CRITICAL FAILURE RELAY

Make & carry for 30 A Carry

continuous:

Break at L/R of 0.25 A DC max. at 48 V 0.10 A DC max. at 125 V 40 ms: Operate time:

< 8 ms Contact material: Silver allow

FAST FORM-C RELAY

Make & carry: 0.1 A max. (resistive load)

Minimum load impedance:

Operate time: Internal Limiting 100, 2 Resistor:

IRIG-B OUTPUT

OUTPUTS

Amplitude: 10 V peak-peak RS485 level

100 ohms Maximum load: Time delay: 1 ms for AM input 40 us for DC-shift input

Isolation:

LATCHING RELAY

Make & carry for 30 A as per ANSI C37.90

0.2 s: Carry 6 A continuous:

Break at L/R of 0.25 A DC max. 40 ms:

Operate time: < 4 ms Contact material: Silver allov

Control: separate operate and reset inputs Control mode: operate-dominant or reset-dominant

REMOTE OUTPUTS (IEC 61850 GSSE)

Standard output 32 points: User output 32 points:

SOLID-STATE OUTPUT RELAY

Operate & <100 µs release time: 265 V DC Maximum

voltage:

Maximum 5 A at 45°C: 4 A at 65°C continuous

current:

Make & carry for as per ANSI C37.90

0.2 s: For 0.3s: 300 A Breaking capacity:

		IEC 647-5/ UL508	UTILITY APPLICATION (AUTO- RECLOSE SCHEME)	INDUSTRIAL APPLICATION
	Operat-	5000 ops 1 s-On, 9 s-Off	5 ops/ .2 s-On,	10000 ops/
	ions/ interval	1000 ops 0.5 s-On, 0.5 s-Of	0.2 s-Off within 1 minute	0.2 s-On, 30 s-Off
	Break	3.2 A L/R = 10 ms		
	capability (0 to 250 VDC)	1.6 A L/R = 20 ms	10 A L/R = 40 ms	10 A L/R = 40 ms
		0.8 A L/R = 40 ms		

COMMUNICATIONS

RS232

19.2 kbps. Modbus® RTU, DNP 3.0 Front port:

RS485

1 or 2 rear ports: Up to 115 kbps, Modbus® RTU, DNP

3.0 isolated together at 36 Vpk Typical distance: 1200 m

Isolation:

ETHERNET PORT 10Base-F

820 nm, multi-mode, supports half-duplex/full-duplex fiber optic with ST connector

820 nm, multi-mode, half-duplex/

Redundant 10Base-F: full-duplex fiber optic with ST connector

10Base-T: RJ45 connector Power budget: 10 dB Max optical -7.6 dBm input power:

-20 dBm Max optical output power: -30 dBm Receiver sensitivity: Typical distance: 1.65 km **SNTP Clock** <10 ms (typical)

(redundant) synchronization error:

COMMUNICATIONS										
PROTOC	PROTOCOLS									
	RS232	RS485	10BaseF	10BaseT	100BaseT					
IEC 61850			•	•	•					
DNP 3.0	•	•	•	•	•					
Modbus	•	•	•	•	•					
IEC104			•	•	•					
EGD			•	•	•					

INTER-RELAY COMMUNICATIONS

SHIELDED TWISTED-PAIR INTERFACE OPTIONS

INTERFACE TYPE	TYPICAL DISTANCE
RS422	1200m
G.703	100m

* NOTE: RS422 distance is based on transmitter power and does not take into consideration the clock source provided by the user.

LINK POWER BUDGET

EMITTER, FIBER TYPE	TRANSMIT POWER	RECEIVED SENSITIVITY	POWER BUDGET
820nm LED Multimode	-20dBm	-30dBm	10dB
1300 nm LED Multimode	-21dBm	-30dBm	9dB
1300 nm ELED Multimode	-21dBm	-30dBm	9dB
1300 nm Laser Singlemode	-1dBm	-30dBm	29dB
1550 nm Laser Singlemode	+5dBm	-30dBm	35dB

* NOTE: These power budgets are calculated from the manufacturers' worst-case transmitter power and worst-case receiver sensitivity

MAXIMUM OPTICAL INPUT POWER

EMITTED, FIBER TYPE	MAX. OPTICAL INPUT POWER
820 nm LED, Multimode	-7.6 dBm
1300 nm LED, Multimode	-11 dBm
1300 nm ELED, Singlemode	-14 dBm
1300 nm Laser, Singlemode	-14 dBm
1500 nm Laser, Singlemode	-14 dBm

TYPICAL LINK DISTANCE

EMITTED	FIBER TYPE	CONNECTOR	TYPICAL
TYPE		TYPE	DISTANCE
820 nm LED 1300 nm	Multimode Multimode	-7.6 dBm -11 dBm	1.65 km 3.8 km
LED 1300 nm ELED	Singlemode	-14 dBm	11.4 km
1300 nm Laser	Singlemode	-14 dBm	64 km
1500 nm Laser	Singlemode	-14 dBm	105 km

* Note: Typical distances listed are based on the following assumptions for system loss. Actual losses will vary from one installation to another, the distance covered by your system may vary.

CONNECTOR LOSSES (TOTAL OF BOTH ENDS)

2dB ST connector

INTER-RELAY COMMUNICATIONS

FIBER LOSSES

820 nm 3 dB/km multimode 1300 nm 1 dB/km mulimode 1300 nm 0.35 dB/km singlemode

1550 nm 0.25 dB/km singlemode

One splice every 2 km, at 0.05 dB Splice losses: loss per splice

SYSTEM MARGIN

3 dB additional loss added to calculations to compensate for all other losses.

Compensate difference in transmitting and receiving (channel asymmetry) channel delays using GPS satellite clock: 10 ms

POWER SUPPLY

LOW RANGE

Nominal DC 24 to 48 V at 3 A voltage:

Min/max DC 20 / 60 V

* NOTE: Low range is DC only.

HIGH RANGE

Nominal DC 125 to 250 V at 0.7 A voltage:

Min/max DC 88 / 300 V

voltage:

Nominal AC 100 to 240 V at 50/60 Hz, 0.7 A voltage: Min/max AC 88 / 265 V at 25 to 100 Hz

voltage **ALL RANGES**

Volt withstand: 2 × Highest Nominal Voltage for 10 ms

Voltage loss 50 ms duration at nominal hold-up: Typical = 15 VA; Max. = 30 VA Power

consumption:

INTERNAL FUSE

RATINGS 8 A / 250 V Low range power supply: 20 / 60 V

High range power supply: INTERRUPTING CAPACITY

100 000 A RMS symmetrical

4 A / 250 V

DC: 10 000 A Hold up time: 200 ms

TYPE TESTS

Flectrical fast ANSI/IFFF C37901 transient: IEC 61000-4-4 IEC 60255-22-4 Oscillatory ANSI/IFFF C37901 IEC 61000-4-12 transient:

IEC 60255-5 Insulation resistance: IFC 60255-6 Dielectric ANSI/IEEE C37.90 strenath: Electrostatic EN 61000-4-2

discharge: Surge EN 61000-4-5 immunity:

ANSI/IEEE C37.90.2 susceptibility:

IEC 61000-4-3 IEC 60255-22-3

Ontario Hydro C-5047-77 Conducted RFI: IEC 61000-4-6

Voltage dips/ interruptions/ IFC 61000-4-11 IEC 60255-11

variations: Power frequency IEC 61000-4-8

magnetic field immunity: Vibration test

(sinusoidal): IEC 60255-21-1

Shock and bump:

* NOTE: IEC 60255-21-2

Type test report available upon

request.

PRODUCTION TESTS

Products go through an environmental test based upon an accepted quality level (AQL) sampling process

ENVIRONMENTAL

Cold: IEC 60028-2-1, 16 h at -40°C Dry Heat: IEC 60028-2-2, 16 h at +85°C

OTHER

IEC 60068-2-30, 95%, Variant Humidity

(non-1,6days condensing):

Up to 2000 m Altitude: Installation

Category:

APPROVALS

UL Listed for the USA and Canada

Manufactured under an ISO9000 registered system.

LVD 73/23/EEC: IEC 1010-1 EMC 81/336/EEC: EN 50081-2, EN 50082-2

For more information, visit gevernova.com/grid-solutions

IEC is a registered trademark of Commission Electrotechnique Internationale. IEEE is a registered trademark of the Institute of Electrical Electronics Engineers, Inc. Modbus is a registered trademark of Schneider Automation. NERC is a registered trademark of North American Electric Reliability Council. NIST is a registered trademark of the National Institute of Standards and Technology.

Multilin, FlexLogic, EnerVista and CyberSentry are trademarks of General Electric Company. GE Vernova reserves the right to make changes to specifications of products described at any time without notice and without obligation to notify any person of such changes.

© 2025 GE Vernova and/or its affiliates. All rights reserved, GE and the GE Monogram are trademarks of General Electric Company used under trademark license.

